summaryrefslogtreecommitdiff
path: root/theories/Relations/Relation_Operators.v
blob: edc112e5cd3f2d0225fc18c94c25863c8f3271d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Relation_Operators.v 8642 2006-03-17 10:09:02Z notin $ i*)

(****************************************************************************)
(*                      Bruno Barras, Cristina Cornes                       *)
(*                                                                          *)
(*  Some of these definitons were taken from :                              *)
(*     Constructing Recursion Operators in Type Theory                      *)
(*     L. Paulson  JSC (1986) 2, 325-355                                    *)
(****************************************************************************)

Require Import Relation_Definitions.
Require Import List.

(** Some operators to build relations *)

Section Transitive_Closure.
  Variable A : Type.
  Variable R : relation A.

  Inductive clos_trans (x: A) : A -> Prop :=
    | t_step : forall y:A, R x y -> clos_trans x y
    | t_trans :
        forall y z:A, clos_trans x y -> clos_trans y z -> clos_trans x z.
End Transitive_Closure.


Section Reflexive_Transitive_Closure.
  Variable A : Type.
  Variable R : relation A.

  Inductive clos_refl_trans (x:A) : A -> Prop:=
    | rt_step : forall y:A, R x y -> clos_refl_trans x y
    | rt_refl : clos_refl_trans x x
    | rt_trans :
        forall y z:A,
          clos_refl_trans x y -> clos_refl_trans y z -> clos_refl_trans x z.
End Reflexive_Transitive_Closure.


Section Reflexive_Symetric_Transitive_Closure.
  Variable A : Type.
  Variable R : relation A.

  Inductive clos_refl_sym_trans : relation A :=
    | rst_step : forall x y:A, R x y -> clos_refl_sym_trans x y
    | rst_refl : forall x:A, clos_refl_sym_trans x x
    | rst_sym :
        forall x y:A, clos_refl_sym_trans x y -> clos_refl_sym_trans y x
    | rst_trans :
        forall x y z:A,
          clos_refl_sym_trans x y ->
          clos_refl_sym_trans y z -> clos_refl_sym_trans x z.
End Reflexive_Symetric_Transitive_Closure.


Section Transposee.
  Variable A : Type.
  Variable R : relation A.

  Definition transp (x y:A) := R y x.
End Transposee.


Section Union.
  Variable A : Type.
  Variables R1 R2 : relation A.

  Definition union (x y:A) := R1 x y \/ R2 x y.
End Union.


Section Disjoint_Union.
Variables A B : Set.
Variable leA : A -> A -> Prop.
Variable leB : B -> B -> Prop.

Inductive le_AsB : A + B -> A + B -> Prop :=
  | le_aa : forall x y:A, leA x y -> le_AsB (inl B x) (inl B y)
  | le_ab : forall (x:A) (y:B), le_AsB (inl B x) (inr A y)
  | le_bb : forall x y:B, leB x y -> le_AsB (inr A x) (inr A y).

End Disjoint_Union. 



Section Lexicographic_Product.
(* Lexicographic order on dependent pairs *)

Variable A : Set.
Variable B : A -> Set.
Variable leA : A -> A -> Prop.
Variable leB : forall x:A, B x -> B x -> Prop.

Inductive lexprod : sigS B -> sigS B -> Prop :=
  | left_lex :
      forall (x x':A) (y:B x) (y':B x'),
        leA x x' -> lexprod (existS B x y) (existS B x' y')
  | right_lex :
      forall (x:A) (y y':B x),
        leB x y y' -> lexprod (existS B x y) (existS B x y').
End Lexicographic_Product.


Section Symmetric_Product.
  Variable A : Set.
  Variable B : Set.
  Variable leA : A -> A -> Prop.
  Variable leB : B -> B -> Prop.

  Inductive symprod : A * B -> A * B -> Prop :=
    | left_sym :
        forall x x':A, leA x x' -> forall y:B, symprod (x, y) (x', y)
    | right_sym :
        forall y y':B, leB y y' -> forall x:A, symprod (x, y) (x, y').

End Symmetric_Product.


Section Swap.
  Variable A : Set.
  Variable R : A -> A -> Prop.

  Inductive swapprod : A * A -> A * A -> Prop :=
    | sp_noswap : forall x x':A * A, symprod A A R R x x' -> swapprod x x'
    | sp_swap :
        forall (x y:A) (p:A * A),
          symprod A A R R (x, y) p -> swapprod (y, x) p.
End Swap.


Section Lexicographic_Exponentiation.

Variable A : Set.
Variable leA : A -> A -> Prop.
Let Nil := nil (A:=A).
Let List := list A.

Inductive Ltl : List -> List -> Prop :=
  | Lt_nil : forall (a:A) (x:List), Ltl Nil (a :: x)
  | Lt_hd : forall a b:A, leA a b -> forall x y:list A, Ltl (a :: x) (b :: y)
  | Lt_tl : forall (a:A) (x y:List), Ltl x y -> Ltl (a :: x) (a :: y).


Inductive Desc : List -> Prop :=
  | d_nil : Desc Nil
  | d_one : forall x:A, Desc (x :: Nil)
  | d_conc :
      forall (x y:A) (l:List),
        leA x y -> Desc (l ++ y :: Nil) -> Desc ((l ++ y :: Nil) ++ x :: Nil).

Definition Pow : Set := sig Desc.

Definition lex_exp (a b:Pow) : Prop := Ltl (proj1_sig a) (proj1_sig b).

End Lexicographic_Exponentiation.

Hint Unfold transp union: sets v62.
Hint Resolve t_step rt_step rt_refl rst_step rst_refl: sets v62.
Hint Immediate rst_sym: sets v62.