summaryrefslogtreecommitdiff
path: root/theories/Reals/Rfunctions.v
blob: 1c353803fc19b34038d989363af491457d48d304 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i Some properties about pow and sum have been made with John Harrison i*)
(*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*)

(********************************************************)
(**          Definition of the sum functions            *)
(*                                                      *)
(********************************************************)
Require Export ArithRing.

Require Import Rbase.
Require Export Rpow_def.
Require Export R_Ifp.
Require Export Rbasic_fun.
Require Export R_sqr.
Require Export SplitAbsolu.
Require Export SplitRmult.
Require Export ArithProp.
Require Import Omega.
Require Import Zpower.
Local Open Scope nat_scope.
Local Open Scope R_scope.

(*******************************)
(** * Lemmas about factorial   *)
(*******************************)
(*********)
Lemma INR_fact_neq_0 : forall n:nat, INR (fact n) <> 0.
Proof.
  intro; red; intro; apply (not_O_INR (fact n) (fact_neq_0 n));
    assumption.
Qed.

(*********)
Lemma fact_simpl : forall n:nat, fact (S n) = (S n * fact n)%nat.
Proof.
  intro; reflexivity.
Qed.

(*********)
Lemma simpl_fact :
  forall n:nat, / INR (fact (S n)) * / / INR (fact n) = / INR (S n).
Proof.
  intro; rewrite (Rinv_involutive (INR (fact n)) (INR_fact_neq_0 n));
    unfold fact at 1; cbv beta iota; fold fact;
      rewrite (mult_INR (S n) (fact n));
        rewrite (Rinv_mult_distr (INR (S n)) (INR (fact n))).
  rewrite (Rmult_assoc (/ INR (S n)) (/ INR (fact n)) (INR (fact n)));
    rewrite (Rinv_l (INR (fact n)) (INR_fact_neq_0 n));
      apply (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1).
  apply not_O_INR; auto.
  apply INR_fact_neq_0.
Qed.

(*******************************)
(** *       Power              *)
(*******************************)
(*********)

Infix "^" := pow : R_scope.

Lemma pow_O : forall x:R, x ^ 0 = 1.
Proof.
  reflexivity.
Qed.

Lemma pow_1 : forall x:R, x ^ 1 = x.
Proof.
  simpl; auto with real.
Qed.

Lemma pow_add : forall (x:R) (n m:nat), x ^ (n + m) = x ^ n * x ^ m.
Proof.
  intros x n; elim n; simpl; auto with real.
  intros n0 H' m; rewrite H'; auto with real.
Qed.

Lemma Rpow_mult_distr : forall (x y:R) (n:nat), (x * y) ^ n = x^n * y^n.
Proof.
intros x y n ; induction n.
 field.
 simpl.
 repeat (rewrite Rmult_assoc) ; apply Rmult_eq_compat_l.
 rewrite IHn ; field.
Qed.

Lemma pow_nonzero : forall (x:R) (n:nat), x <> 0 -> x ^ n <> 0.
Proof.
  intro; simple induction n; simpl.
  intro; red; intro; apply R1_neq_R0; assumption.
  intros; red; intro; elim (Rmult_integral x (x ^ n0) H1).
  intro; auto.
  apply H; assumption.
Qed.

Hint Resolve pow_O pow_1 pow_add pow_nonzero: real.

Lemma pow_RN_plus :
  forall (x:R) (n m:nat), x <> 0 -> x ^ n = x ^ (n + m) * / x ^ m.
Proof.
  intros x n; elim n; simpl; auto with real.
  intros n0 H' m H'0.
  rewrite Rmult_assoc; rewrite <- H'; auto.
Qed.

Lemma pow_lt : forall (x:R) (n:nat), 0 < x -> 0 < x ^ n.
Proof.
  intros x n; elim n; simpl; auto with real.
  intros n0 H' H'0; replace 0 with (x * 0); auto with real.
Qed.
Hint Resolve pow_lt: real.

Lemma Rlt_pow_R1 : forall (x:R) (n:nat), 1 < x -> (0 < n)%nat -> 1 < x ^ n.
Proof.
  intros x n; elim n; simpl; auto with real.
  intros H' H'0; exfalso; omega.
  intros n0; case n0.
  simpl; rewrite Rmult_1_r; auto.
  intros n1 H' H'0 H'1.
  replace 1 with (1 * 1); auto with real.
  apply Rlt_trans with (r2 := x * 1); auto with real.
  apply Rmult_lt_compat_l; auto with real.
  apply Rlt_trans with (r2 := 1); auto with real.
  apply H'; auto with arith.
Qed.
Hint Resolve Rlt_pow_R1: real.

Lemma Rlt_pow : forall (x:R) (n m:nat), 1 < x -> (n < m)%nat -> x ^ n < x ^ m.
Proof.
  intros x n m H' H'0; replace m with (m - n + n)%nat.
  rewrite pow_add.
  pattern (x ^ n) at 1; replace (x ^ n) with (1 * x ^ n);
    auto with real.
  apply Rminus_lt.
  repeat rewrite (fun y:R => Rmult_comm y (x ^ n));
    rewrite <- Rmult_minus_distr_l.
  replace 0 with (x ^ n * 0); auto with real.
  apply Rmult_lt_compat_l; auto with real.
  apply pow_lt; auto with real.
  apply Rlt_trans with (r2 := 1); auto with real.
  apply Rlt_minus; auto with real.
  apply Rlt_pow_R1; auto with arith.
  apply plus_lt_reg_l with (p := n); auto with arith.
  rewrite le_plus_minus_r; auto with arith; rewrite <- plus_n_O; auto.
  rewrite plus_comm; auto with arith.
Qed.
Hint Resolve Rlt_pow: real.

(*********)
Lemma tech_pow_Rmult : forall (x:R) (n:nat), x * x ^ n = x ^ S n.
Proof.
  simple induction n; simpl; trivial.
Qed.

(*********)
Lemma tech_pow_Rplus :
  forall (x:R) (a n:nat), x ^ a + INR n * x ^ a = INR (S n) * x ^ a.
Proof.
  intros; pattern (x ^ a) at 1;
    rewrite <- (let (H1, H2) := Rmult_ne (x ^ a) in H1);
      rewrite (Rmult_comm (INR n) (x ^ a));
        rewrite <- (Rmult_plus_distr_l (x ^ a) 1 (INR n));
          rewrite (Rplus_comm 1 (INR n)); rewrite <- (S_INR n);
            apply Rmult_comm.
Qed.

Lemma poly : forall (n:nat) (x:R), 0 < x -> 1 + INR n * x <= (1 + x) ^ n.
Proof.
  intros; elim n.
  simpl; cut (1 + 0 * x = 1).
  intro; rewrite H0; unfold Rle; right; reflexivity.
  ring.
  intros; unfold pow; fold pow;
    apply
      (Rle_trans (1 + INR (S n0) * x) ((1 + x) * (1 + INR n0 * x))
        ((1 + x) * (1 + x) ^ n0)).
  cut ((1 + x) * (1 + INR n0 * x) = 1 + INR (S n0) * x + INR n0 * (x * x)).
  intro; rewrite H1; pattern (1 + INR (S n0) * x) at 1;
    rewrite <- (let (H1, H2) := Rplus_ne (1 + INR (S n0) * x) in H1);
      apply Rplus_le_compat_l; elim n0; intros.
  simpl; rewrite Rmult_0_l; unfold Rle; right; auto.
  unfold Rle; left; generalize Rmult_gt_0_compat; unfold Rgt;
    intro; fold (Rsqr x);
      apply (H3 (INR (S n1)) (Rsqr x) (lt_INR_0 (S n1) (lt_O_Sn n1)));
        fold (x > 0) in H;
          apply (Rlt_0_sqr x (Rlt_dichotomy_converse x 0 (or_intror (x < 0) H))).
  rewrite (S_INR n0); ring.
  unfold Rle in H0; elim H0; intro.
  unfold Rle; left; apply Rmult_lt_compat_l.
  rewrite Rplus_comm; apply (Rle_lt_0_plus_1 x (Rlt_le 0 x H)).
  assumption.
  rewrite H1; unfold Rle; right; trivial.
Qed.

Lemma Power_monotonic :
  forall (x:R) (m n:nat),
    Rabs x > 1 -> (m <= n)%nat -> Rabs (x ^ m) <= Rabs (x ^ n).
Proof.
  intros x m n H; induction  n as [| n Hrecn]; intros; inversion H0.
  unfold Rle; right; reflexivity.
  unfold Rle; right; reflexivity.
  apply (Rle_trans (Rabs (x ^ m)) (Rabs (x ^ n)) (Rabs (x ^ S n))).
  apply Hrecn; assumption.
  simpl; rewrite Rabs_mult.
  pattern (Rabs (x ^ n)) at 1.
  rewrite <- Rmult_1_r.
  rewrite (Rmult_comm (Rabs x) (Rabs (x ^ n))).
  apply Rmult_le_compat_l.
  apply Rabs_pos.
  unfold Rgt in H.
  apply Rlt_le; assumption.
Qed.

Lemma RPow_abs : forall (x:R) (n:nat), Rabs x ^ n = Rabs (x ^ n).
Proof.
  intro; simple induction n; simpl.
  symmetry; apply Rabs_pos_eq; apply Rlt_le; apply Rlt_0_1.
  intros; rewrite H; symmetry; apply Rabs_mult.
Qed.


Lemma Pow_x_infinity :
  forall x:R,
    Rabs x > 1 ->
    forall b:R,
      exists N : nat, (forall n:nat, (n >= N)%nat -> Rabs (x ^ n) >= b).
Proof.
  intros; elim (archimed (b * / (Rabs x - 1))); intros; clear H1;
    cut (exists N : nat, INR N >= b * / (Rabs x - 1)).
  intro; elim H1; clear H1; intros; exists x0; intros;
    apply (Rge_trans (Rabs (x ^ n)) (Rabs (x ^ x0)) b).
  apply Rle_ge; apply Power_monotonic; assumption.
  rewrite <- RPow_abs; cut (Rabs x = 1 + (Rabs x - 1)).
  intro; rewrite H3;
    apply (Rge_trans ((1 + (Rabs x - 1)) ^ x0) (1 + INR x0 * (Rabs x - 1)) b).
  apply Rle_ge; apply poly; fold (Rabs x - 1 > 0); apply Rgt_minus;
    assumption.
  apply (Rge_trans (1 + INR x0 * (Rabs x - 1)) (INR x0 * (Rabs x - 1)) b).
  apply Rle_ge; apply Rlt_le; rewrite (Rplus_comm 1 (INR x0 * (Rabs x - 1)));
    pattern (INR x0 * (Rabs x - 1)) at 1;
      rewrite <- (let (H1, H2) := Rplus_ne (INR x0 * (Rabs x - 1)) in H1);
        apply Rplus_lt_compat_l; apply Rlt_0_1.
  cut (b = b * / (Rabs x - 1) * (Rabs x - 1)).
  intros; rewrite H4; apply Rmult_ge_compat_r.
  apply Rge_minus; unfold Rge; left; assumption.
  assumption.
  rewrite Rmult_assoc; rewrite Rinv_l.
  ring.
  apply Rlt_dichotomy_converse; right; apply Rgt_minus; assumption.
  ring.
  cut ((0 <= up (b * / (Rabs x - 1)))%Z \/ (up (b * / (Rabs x - 1)) <= 0)%Z).
  intros; elim H1; intro.
  elim (IZN (up (b * / (Rabs x - 1))) H2); intros; exists x0;
    apply
      (Rge_trans (INR x0) (IZR (up (b * / (Rabs x - 1)))) (b * / (Rabs x - 1))).
  rewrite INR_IZR_INZ; apply IZR_ge; omega.
  unfold Rge; left; assumption.
  exists 0%nat;
    apply
      (Rge_trans (INR 0) (IZR (up (b * / (Rabs x - 1)))) (b * / (Rabs x - 1))).
  rewrite INR_IZR_INZ; apply IZR_ge; simpl; omega.
  unfold Rge; left; assumption.
  omega.
Qed.

Lemma pow_ne_zero : forall n:nat, n <> 0%nat -> 0 ^ n = 0.
Proof.
  simple induction n.
  simpl; auto.
  intros; elim H; reflexivity.
  intros; simpl; apply Rmult_0_l.
Qed.

Lemma Rinv_pow : forall (x:R) (n:nat), x <> 0 -> / x ^ n = (/ x) ^ n.
Proof.
  intros; elim n; simpl.
  apply Rinv_1.
  intro m; intro; rewrite Rinv_mult_distr.
  rewrite H0; reflexivity; assumption.
  assumption.
  apply pow_nonzero; assumption.
Qed.

Lemma pow_lt_1_zero :
  forall x:R,
    Rabs x < 1 ->
    forall y:R,
      0 < y ->
      exists N : nat, (forall n:nat, (n >= N)%nat -> Rabs (x ^ n) < y).
Proof.
  intros; elim (Req_dec x 0); intro.
  exists 1%nat; rewrite H1; intros n GE; rewrite pow_ne_zero.
  rewrite Rabs_R0; assumption.
  inversion GE; auto.
  cut (Rabs (/ x) > 1).
  intros; elim (Pow_x_infinity (/ x) H2 (/ y + 1)); intros N.
  exists N; intros; rewrite <- (Rinv_involutive y).
  rewrite <- (Rinv_involutive (Rabs (x ^ n))).
  apply Rinv_lt_contravar.
  apply Rmult_lt_0_compat.
  apply Rinv_0_lt_compat.
  assumption.
  apply Rinv_0_lt_compat.
  apply Rabs_pos_lt.
  apply pow_nonzero.
  assumption.
  rewrite <- Rabs_Rinv.
  rewrite Rinv_pow.
  apply (Rlt_le_trans (/ y) (/ y + 1) (Rabs ((/ x) ^ n))).
  pattern (/ y) at 1.
  rewrite <- (let (H1, H2) := Rplus_ne (/ y) in H1).
  apply Rplus_lt_compat_l.
  apply Rlt_0_1.
  apply Rge_le.
  apply H3.
  assumption.
  assumption.
  apply pow_nonzero.
  assumption.
  apply Rabs_no_R0.
  apply pow_nonzero.
  assumption.
  apply Rlt_dichotomy_converse.
  right; unfold Rgt; assumption.
  rewrite <- (Rinv_involutive 1).
  rewrite Rabs_Rinv.
  unfold Rgt; apply Rinv_lt_contravar.
  apply Rmult_lt_0_compat.
  apply Rabs_pos_lt.
  assumption.
  rewrite Rinv_1; apply Rlt_0_1.
  rewrite Rinv_1; assumption.
  assumption.
  red; intro; apply R1_neq_R0; assumption.
Qed.

Lemma pow_R1 : forall (r:R) (n:nat), r ^ n = 1 -> Rabs r = 1 \/ n = 0%nat.
Proof.
  intros r n H'.
  case (Req_dec (Rabs r) 1); auto; intros H'1.
  case (Rdichotomy _ _ H'1); intros H'2.
  generalize H'; case n; auto.
  intros n0 H'0.
  cut (r <> 0); [ intros Eq1 | idtac ].
  cut (Rabs r <> 0); [ intros Eq2 | apply Rabs_no_R0 ]; auto.
  absurd (Rabs (/ r) ^ 0 < Rabs (/ r) ^ S n0); auto.
  replace (Rabs (/ r) ^ S n0) with 1.
  simpl; apply Rlt_irrefl; auto.
  rewrite Rabs_Rinv; auto.
  rewrite <- Rinv_pow; auto.
  rewrite RPow_abs; auto.
  rewrite H'0; rewrite Rabs_right; auto with real rorders.
  apply Rlt_pow; auto with arith.
  rewrite Rabs_Rinv; auto.
  apply Rmult_lt_reg_l with (r := Rabs r).
  case (Rabs_pos r); auto.
  intros H'3; case Eq2; auto.
  rewrite Rmult_1_r; rewrite Rinv_r; auto with real.
  red; intro; absurd (r ^ S n0 = 1); auto.
  simpl; rewrite H; rewrite Rmult_0_l; auto with real.
  generalize H'; case n; auto.
  intros n0 H'0.
  cut (r <> 0); [ intros Eq1 | auto with real ].
  cut (Rabs r <> 0); [ intros Eq2 | apply Rabs_no_R0 ]; auto.
  absurd (Rabs r ^ 0 < Rabs r ^ S n0); auto with real arith.
  repeat rewrite RPow_abs; rewrite H'0; simpl; auto with real.
  red; intro; absurd (r ^ S n0 = 1); auto.
  simpl; rewrite H; rewrite Rmult_0_l; auto with real.
Qed.

Lemma pow_Rsqr : forall (x:R) (n:nat), x ^ (2 * n) = Rsqr x ^ n.
Proof.
  intros; induction  n as [| n Hrecn].
  reflexivity.
  replace (2 * S n)%nat with (S (S (2 * n))).
  replace (x ^ S (S (2 * n))) with (x * x * x ^ (2 * n)).
  rewrite Hrecn; reflexivity.
  simpl; ring.
  ring.
Qed.

Lemma pow_le : forall (a:R) (n:nat), 0 <= a -> 0 <= a ^ n.
Proof.
  intros; induction  n as [| n Hrecn].
  simpl; left; apply Rlt_0_1.
  simpl; apply Rmult_le_pos; assumption.
Qed.

(**********)
Lemma pow_1_even : forall n:nat, (-1) ^ (2 * n) = 1.
Proof.
  intro; induction  n as [| n Hrecn].
  reflexivity.
  replace (2 * S n)%nat with (2 + 2 * n)%nat by ring.
  rewrite pow_add; rewrite Hrecn; simpl; ring.
Qed.

(**********)
Lemma pow_1_odd : forall n:nat, (-1) ^ S (2 * n) = -1.
Proof.
  intro; replace (S (2 * n)) with (2 * n + 1)%nat by ring.
  rewrite pow_add; rewrite pow_1_even; simpl; ring.
Qed.

(**********)
Lemma pow_1_abs : forall n:nat, Rabs ((-1) ^ n) = 1.
Proof.
  intro; induction  n as [| n Hrecn].
  simpl; apply Rabs_R1.
  replace (S n) with (n + 1)%nat; [ rewrite pow_add | ring ].
  rewrite Rabs_mult.
  rewrite Hrecn; rewrite Rmult_1_l; simpl; rewrite Rmult_1_r;
    rewrite Rabs_Ropp; apply Rabs_R1.
Qed.

Lemma pow_mult : forall (x:R) (n1 n2:nat), x ^ (n1 * n2) = (x ^ n1) ^ n2.
Proof.
  intros; induction  n2 as [| n2 Hrecn2].
  simpl; replace (n1 * 0)%nat with 0%nat; [ reflexivity | ring ].
  replace (n1 * S n2)%nat with (n1 * n2 + n1)%nat.
  replace (S n2) with (n2 + 1)%nat by ring.
  do 2 rewrite pow_add.
  rewrite Hrecn2.
  simpl.
  ring.
  ring.
Qed.

Lemma pow_incr : forall (x y:R) (n:nat), 0 <= x <= y -> x ^ n <= y ^ n.
Proof.
  intros.
  induction  n as [| n Hrecn].
  right; reflexivity.
  simpl.
  elim H; intros.
  apply Rle_trans with (y * x ^ n).
  do 2 rewrite <- (Rmult_comm (x ^ n)).
  apply Rmult_le_compat_l.
  apply pow_le; assumption.
  assumption.
  apply Rmult_le_compat_l.
  apply Rle_trans with x; assumption.
  apply Hrecn.
Qed.

Lemma pow_R1_Rle : forall (x:R) (k:nat), 1 <= x -> 1 <= x ^ k.
Proof.
  intros.
  induction  k as [| k Hreck].
  right; reflexivity.
  simpl.
  apply Rle_trans with (x * 1).
  rewrite Rmult_1_r; assumption.
  apply Rmult_le_compat_l.
  left; apply Rlt_le_trans with 1; [ apply Rlt_0_1 | assumption ].
  exact Hreck.
Qed.

Lemma Rle_pow :
  forall (x:R) (m n:nat), 1 <= x -> (m <= n)%nat -> x ^ m <= x ^ n.
Proof.
  intros.
  replace n with (n - m + m)%nat.
  rewrite pow_add.
  rewrite Rmult_comm.
  pattern (x ^ m) at 1; rewrite <- Rmult_1_r.
  apply Rmult_le_compat_l.
  apply pow_le; left; apply Rlt_le_trans with 1; [ apply Rlt_0_1 | assumption ].
  apply pow_R1_Rle; assumption.
  rewrite plus_comm.
  symmetry ; apply le_plus_minus; assumption.
Qed.

Lemma pow1 : forall n:nat, 1 ^ n = 1.
Proof.
  intro; induction  n as [| n Hrecn].
  reflexivity.
  simpl; rewrite Hrecn; rewrite Rmult_1_r; reflexivity.
Qed.

Lemma pow_Rabs : forall (x:R) (n:nat), x ^ n <= Rabs x ^ n.
Proof.
  intros; induction  n as [| n Hrecn].
  right; reflexivity.
  simpl; destruct (Rcase_abs x) as [Hlt|Hle].
  apply Rle_trans with (Rabs (x * x ^ n)).
  apply RRle_abs.
  rewrite Rabs_mult.
  apply Rmult_le_compat_l.
  apply Rabs_pos.
  right; symmetry; apply RPow_abs.
  pattern (Rabs x) at 1; rewrite (Rabs_right x Hle);
    apply Rmult_le_compat_l.
  apply Rge_le; exact Hle.
  apply Hrecn.
Qed.

Lemma pow_maj_Rabs : forall (x y:R) (n:nat), Rabs y <= x -> y ^ n <= x ^ n.
Proof.
  intros; cut (0 <= x).
  intro; apply Rle_trans with (Rabs y ^ n).
  apply pow_Rabs.
  induction  n as [| n Hrecn].
  right; reflexivity.
  simpl; apply Rle_trans with (x * Rabs y ^ n).
  do 2 rewrite <- (Rmult_comm (Rabs y ^ n)).
  apply Rmult_le_compat_l.
  apply pow_le; apply Rabs_pos.
  assumption.
  apply Rmult_le_compat_l.
  apply H0.
  apply Hrecn.
  apply Rle_trans with (Rabs y); [ apply Rabs_pos | exact H ].
Qed.

Lemma Rsqr_pow2 : forall x, Rsqr x = x ^ 2.
Proof.
intros; unfold Rsqr; simpl; rewrite Rmult_1_r; reflexivity.
Qed.


(*******************************)
(** *       PowerRZ            *)
(*******************************)
(*i Due to L.Thery i*)

Definition powerRZ (x:R) (n:Z) :=
  match n with
    | Z0 => 1
    | Zpos p => x ^ Pos.to_nat p
    | Zneg p => / x ^ Pos.to_nat p
  end.

Local Infix "^Z" := powerRZ (at level 30, right associativity) : R_scope.

Lemma Zpower_NR0 :
  forall (x:Z) (n:nat), (0 <= x)%Z -> (0 <= Zpower_nat x n)%Z.
Proof.
  induction n; unfold Zpower_nat; simpl; auto with zarith.
Qed.

Lemma powerRZ_O : forall x:R, x ^Z 0 = 1.
Proof.
  reflexivity.
Qed.

Lemma powerRZ_1 : forall x:R, x ^Z Z.succ 0 = x.
Proof.
  simpl; auto with real.
Qed.

Lemma powerRZ_NOR : forall (x:R) (z:Z), x <> 0 -> x ^Z z <> 0.
Proof.
  destruct z; simpl; auto with real.
Qed.

Lemma powerRZ_pos_sub (x:R) (n m:positive) : x <> 0 ->
   x ^Z (Z.pos_sub n m) = x ^ Pos.to_nat n * / x ^ Pos.to_nat m.
Proof.
 intro Hx.
 rewrite Z.pos_sub_spec.
 case Pos.compare_spec; intro H; simpl.
 - subst; auto with real.
 - rewrite Pos2Nat.inj_sub by trivial.
   rewrite Pos2Nat.inj_lt in H.
   rewrite (pow_RN_plus x _ (Pos.to_nat n)) by auto with real.
   rewrite plus_comm, le_plus_minus_r by auto with real.
   rewrite Rinv_mult_distr, Rinv_involutive; auto with real.
 - rewrite Pos2Nat.inj_sub by trivial.
   rewrite Pos2Nat.inj_lt in H.
   rewrite (pow_RN_plus x _ (Pos.to_nat m)) by auto with real.
   rewrite plus_comm, le_plus_minus_r by auto with real.
   reflexivity.
Qed.

Lemma powerRZ_add :
  forall (x:R) (n m:Z), x <> 0 -> x ^Z (n + m) = x ^Z n * x ^Z m.
Proof.
  intros x [|n|n] [|m|m]; simpl; intros; auto with real.
  - (* + + *)
    rewrite Pos2Nat.inj_add; auto with real.
  - (* + - *)
    now apply powerRZ_pos_sub.
  - (* - + *)
    rewrite Rmult_comm. now apply powerRZ_pos_sub.
  - (* - - *)
    rewrite Pos2Nat.inj_add; auto with real.
    rewrite pow_add; auto with real.
    apply Rinv_mult_distr; apply pow_nonzero; auto.
Qed.
Hint Resolve powerRZ_O powerRZ_1 powerRZ_NOR powerRZ_add: real.

Lemma Zpower_nat_powerRZ :
  forall n m:nat, IZR (Zpower_nat (Z.of_nat n) m) = INR n ^Z Z.of_nat m.
Proof.
  intros n m; elim m; simpl; auto with real.
  intros m1 H'; rewrite SuccNat2Pos.id_succ; simpl.
  replace (Zpower_nat (Z.of_nat n) (S m1)) with
  (Z.of_nat n * Zpower_nat (Z.of_nat n) m1)%Z.
  rewrite mult_IZR; auto with real.
  repeat rewrite <- INR_IZR_INZ; simpl.
  rewrite H'; simpl.
  case m1; simpl; auto with real.
  intros m2; rewrite SuccNat2Pos.id_succ; auto.
  unfold Zpower_nat; auto.
Qed.

Lemma Zpower_pos_powerRZ :
  forall n m, IZR (Z.pow_pos n m) = IZR n ^Z Zpos m.
Proof.
  intros.
  rewrite Zpower_pos_nat; simpl.
  induction (Pos.to_nat m).
  easy.
  unfold Zpower_nat; simpl.
  rewrite mult_IZR.
  now rewrite <- IHn0.
Qed.

Lemma powerRZ_lt : forall (x:R) (z:Z), 0 < x -> 0 < x ^Z z.
Proof.
  intros x z; case z; simpl; auto with real.
Qed.
Hint Resolve powerRZ_lt: real.

Lemma powerRZ_le : forall (x:R) (z:Z), 0 < x -> 0 <= x ^Z z.
Proof.
  intros x z H'; apply Rlt_le; auto with real.
Qed.
Hint Resolve powerRZ_le: real.

Lemma Zpower_nat_powerRZ_absolu :
  forall n m:Z, (0 <= m)%Z -> IZR (Zpower_nat n (Z.abs_nat m)) = IZR n ^Z m.
Proof.
  intros n m; case m; simpl; auto with zarith.
  intros p H'; elim (Pos.to_nat p); simpl; auto with zarith.
  intros n0 H'0; rewrite <- H'0; simpl; auto with zarith.
  rewrite <- mult_IZR; auto.
  intros p H'; absurd (0 <= Zneg p)%Z; auto with zarith.
Qed.

Lemma powerRZ_R1 : forall n:Z, 1 ^Z n = 1.
Proof.
  intros n; case n; simpl; auto.
  intros p; elim (Pos.to_nat p); simpl; auto; intros n0 H'; rewrite H';
    ring.
  intros p; elim (Pos.to_nat p); simpl.
  exact Rinv_1.
  intros n1 H'; rewrite Rinv_mult_distr; try rewrite Rinv_1; try rewrite H';
    auto with real.
Qed.

(*******************************)
(* For easy interface          *)
(*******************************)
(* decimal_exp r z is defined as r 10^z *)

Definition decimal_exp (r:R) (z:Z) : R := (r * 10 ^Z z).


(*******************************)
(** * Sum of n first naturals  *)
(*******************************)
(*********)
Fixpoint sum_nat_f_O (f:nat -> nat) (n:nat) : nat :=
  match n with
    | O => f 0%nat
    | S n' => (sum_nat_f_O f n' + f (S n'))%nat
  end.

(*********)
Definition sum_nat_f (s n:nat) (f:nat -> nat) : nat :=
  sum_nat_f_O (fun x:nat => f (x + s)%nat) (n - s).

(*********)
Definition sum_nat_O (n:nat) : nat := sum_nat_f_O (fun x:nat => x) n.

(*********)
Definition sum_nat (s n:nat) : nat := sum_nat_f s n (fun x:nat => x).

(*******************************)
(** *          Sum             *)
(*******************************)
(*********)
Fixpoint sum_f_R0 (f:nat -> R) (N:nat) : R :=
  match N with
    | O => f 0%nat
    | S i => sum_f_R0 f i + f (S i)
  end.

(*********)
Definition sum_f (s n:nat) (f:nat -> R) : R :=
  sum_f_R0 (fun x:nat => f (x + s)%nat) (n - s).

Lemma GP_finite :
  forall (x:R) (n:nat),
    sum_f_R0 (fun n:nat => x ^ n) n * (x - 1) = x ^ (n + 1) - 1.
Proof.
  intros; induction  n as [| n Hrecn]; simpl.
  ring.
  rewrite Rmult_plus_distr_r; rewrite Hrecn; cut ((n + 1)%nat = S n).
  intro H; rewrite H; simpl; ring.
  omega.
Qed.

Lemma sum_f_R0_triangle :
  forall (x:nat -> R) (n:nat),
    Rabs (sum_f_R0 x n) <= sum_f_R0 (fun i:nat => Rabs (x i)) n.
Proof.
  intro; simple induction n; simpl.
  unfold Rle; right; reflexivity.
  intro m; intro;
    apply
      (Rle_trans (Rabs (sum_f_R0 x m + x (S m)))
        (Rabs (sum_f_R0 x m) + Rabs (x (S m)))
        (sum_f_R0 (fun i:nat => Rabs (x i)) m + Rabs (x (S m)))).
  apply Rabs_triang.
  rewrite Rplus_comm;
    rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (x i)) m) (Rabs (x (S m))));
      apply Rplus_le_compat_l; assumption.
Qed.

(*******************************)
(** *     Distance  in R       *)
(*******************************)

(*********)
Definition R_dist (x y:R) : R := Rabs (x - y).

(*********)
Lemma R_dist_pos : forall x y:R, R_dist x y >= 0.
Proof.
  intros; unfold R_dist; unfold Rabs; case (Rcase_abs (x - y));
    intro l.
  unfold Rge; left; apply (Ropp_gt_lt_0_contravar (x - y) l).
  trivial.
Qed.

(*********)
Lemma R_dist_sym : forall x y:R, R_dist x y = R_dist y x.
Proof.
  unfold R_dist; intros; split_Rabs; try ring.
  generalize (Ropp_gt_lt_0_contravar (y - x) Hlt0); intro;
    rewrite (Ropp_minus_distr y x) in H; generalize (Rlt_asym (x - y) 0 Hlt);
      intro; unfold Rgt in H; exfalso; auto.
  generalize (minus_Rge y x Hge0); intro; generalize (minus_Rge x y Hge); intro;
    generalize (Rge_antisym x y H0 H); intro; rewrite H1;
      ring.
Qed.

(*********)
Lemma R_dist_refl : forall x y:R, R_dist x y = 0 <-> x = y.
Proof.
  unfold R_dist; intros; split_Rabs; split; intros.
  rewrite (Ropp_minus_distr x y) in H; symmetry;
    apply (Rminus_diag_uniq y x H).
  rewrite (Ropp_minus_distr x y); generalize (eq_sym H); intro;
    apply (Rminus_diag_eq y x H0).
  apply (Rminus_diag_uniq x y H).
  apply (Rminus_diag_eq x y H).
Qed.

Lemma R_dist_eq : forall x:R, R_dist x x = 0.
Proof.
  unfold R_dist; intros; split_Rabs; intros; ring.
Qed.

(***********)
Lemma R_dist_tri : forall x y z:R, R_dist x y <= R_dist x z + R_dist z y.
Proof.
  intros; unfold R_dist; replace (x - y) with (x - z + (z - y));
    [ apply (Rabs_triang (x - z) (z - y)) | ring ].
Qed.

(*********)
Lemma R_dist_plus :
  forall a b c d:R, R_dist (a + c) (b + d) <= R_dist a b + R_dist c d.
Proof.
  intros; unfold R_dist;
    replace (a + c - (b + d)) with (a - b + (c - d)).
  exact (Rabs_triang (a - b) (c - d)).
  ring.
Qed.

Lemma R_dist_mult_l : forall a b c,
  R_dist (a * b) (a * c) = Rabs a * R_dist b c.
Proof.
unfold R_dist. 
intros a b c; rewrite <- Rmult_minus_distr_l, Rabs_mult; reflexivity.
Qed.

(*******************************)
(** *     Infinite Sum          *)
(*******************************)
(*********)
Definition infinite_sum (s:nat -> R) (l:R) : Prop :=
  forall eps:R,
    eps > 0 ->
    exists N : nat,
      (forall n:nat, (n >= N)%nat -> R_dist (sum_f_R0 s n) l < eps).

(** Compatibility with previous versions *)
Notation infinit_sum := infinite_sum (only parsing).