summaryrefslogtreecommitdiff
path: root/theories/Reals/R_sqr.v
blob: 445ffcb21bda1fdf4bee162377ee9f4dc87d50b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Rbase.
Require Import Rbasic_fun.
Local Open Scope R_scope.

(****************************************************)
(** Rsqr : some results                             *)
(****************************************************)

Ltac ring_Rsqr := unfold Rsqr; ring.

Lemma Rsqr_neg : forall x:R, Rsqr x = Rsqr (- x).
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_mult : forall x y:R, Rsqr (x * y) = Rsqr x * Rsqr y.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_plus : forall x y:R, Rsqr (x + y) = Rsqr x + Rsqr y + 2 * x * y.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_minus : forall x y:R, Rsqr (x - y) = Rsqr x + Rsqr y - 2 * x * y.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_neg_minus : forall x y:R, Rsqr (x - y) = Rsqr (y - x).
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_1 : Rsqr 1 = 1.
Proof.
  ring_Rsqr.
Qed.

Lemma Rsqr_gt_0_0 : forall x:R, 0 < Rsqr x -> x <> 0.
Proof.
  intros; red; intro; rewrite H0 in H; rewrite Rsqr_0 in H;
    elim (Rlt_irrefl 0 H).
Qed.

Lemma Rsqr_pos_lt : forall x:R, x <> 0 -> 0 < Rsqr x.
Proof.
  intros; case (Rtotal_order 0 x); intro;
    [ unfold Rsqr; apply Rmult_lt_0_compat; assumption
      | elim H0; intro;
        [ elim H; symmetry ; exact H1
          | rewrite Rsqr_neg; generalize (Ropp_lt_gt_contravar x 0 H1);
            rewrite Ropp_0; intro; unfold Rsqr;
              apply Rmult_lt_0_compat; assumption ] ].
Qed.

Lemma Rsqr_div : forall x y:R, y <> 0 -> Rsqr (x / y) = Rsqr x / Rsqr y.
Proof.
  intros; unfold Rsqr.
  unfold Rdiv.
  rewrite Rinv_mult_distr.
  repeat rewrite Rmult_assoc.
  apply Rmult_eq_compat_l.
  rewrite Rmult_comm. 
  repeat rewrite Rmult_assoc.
  apply Rmult_eq_compat_l.
  reflexivity.
  assumption.
  assumption.
Qed.

Lemma Rsqr_eq_0 : forall x:R, Rsqr x = 0 -> x = 0.
Proof.
  unfold Rsqr; intros; generalize (Rmult_integral x x H); intro;
    elim H0; intro; assumption.
Qed.

Lemma Rsqr_minus_plus : forall a b:R, (a - b) * (a + b) = Rsqr a - Rsqr b.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_plus_minus : forall a b:R, (a + b) * (a - b) = Rsqr a - Rsqr b.
Proof.
  intros; ring_Rsqr.
Qed.

Lemma Rsqr_incr_0 :
  forall x y:R, Rsqr x <= Rsqr y -> 0 <= x -> 0 <= y -> x <= y.
Proof.
  intros; destruct (Rle_dec x y) as [Hle|Hnle];
    [ assumption
      | cut (y < x);
        [ intro; unfold Rsqr in H;
          generalize (Rmult_le_0_lt_compat y x y x H1 H1 H2 H2);
            intro; generalize (Rle_lt_trans (x * x) (y * y) (x * x) H H3);
              intro; elim (Rlt_irrefl (x * x) H4)
          | auto with real ] ].
Qed.

Lemma Rsqr_incr_0_var : forall x y:R, Rsqr x <= Rsqr y -> 0 <= y -> x <= y.
Proof.
  intros; destruct (Rle_dec x y) as [Hle|Hnle];
    [ assumption
      | cut (y < x);
        [ intro; unfold Rsqr in H;
          generalize (Rmult_le_0_lt_compat y x y x H0 H0 H1 H1);
            intro; generalize (Rle_lt_trans (x * x) (y * y) (x * x) H H2);
              intro; elim (Rlt_irrefl (x * x) H3)
          | auto with real ] ].
Qed.

Lemma Rsqr_incr_1 :
  forall x y:R, x <= y -> 0 <= x -> 0 <= y -> Rsqr x <= Rsqr y.
Proof.
  intros; unfold Rsqr; apply Rmult_le_compat; assumption.
Qed.

Lemma Rsqr_incrst_0 :
  forall x y:R, Rsqr x < Rsqr y -> 0 <= x -> 0 <= y -> x < y.
Proof.
  intros; case (Rtotal_order x y); intro;
    [ assumption
      | elim H2; intro;
        [ rewrite H3 in H; elim (Rlt_irrefl (Rsqr y) H)
          | generalize (Rmult_le_0_lt_compat y x y x H1 H1 H3 H3); intro;
            unfold Rsqr in H; generalize (Rlt_trans (x * x) (y * y) (x * x) H H4);
              intro; elim (Rlt_irrefl (x * x) H5) ] ].
Qed.

Lemma Rsqr_incrst_1 :
  forall x y:R, x < y -> 0 <= x -> 0 <= y -> Rsqr x < Rsqr y.
Proof.
  intros; unfold Rsqr; apply Rmult_le_0_lt_compat; assumption.
Qed.

Lemma Rsqr_neg_pos_le_0 :
  forall x y:R, Rsqr x <= Rsqr y -> 0 <= y -> - y <= x.
Proof.
  intros; destruct (Rcase_abs x) as [Hlt|Hle].
  generalize (Ropp_lt_gt_contravar x 0 Hlt); rewrite Ropp_0; intro;
    generalize (Rlt_le 0 (- x) H1); intro; rewrite (Rsqr_neg x) in H;
      generalize (Rsqr_incr_0 (- x) y H H2 H0); intro;
        rewrite <- (Ropp_involutive x); apply Ropp_ge_le_contravar;
          apply Rle_ge; assumption.
  apply Rle_trans with 0;
    [ rewrite <- Ropp_0; apply Ropp_ge_le_contravar; apply Rle_ge; assumption
      | apply Rge_le; assumption ].
Qed.

Lemma Rsqr_neg_pos_le_1 :
  forall x y:R, - y <= x -> x <= y -> 0 <= y -> Rsqr x <= Rsqr y.
Proof.
  intros x y H H0 H1; destruct (Rcase_abs x) as [Hlt|Hle].
  apply Ropp_lt_gt_contravar, Rlt_le in Hlt; rewrite Ropp_0 in Hlt;
  apply Ropp_le_ge_contravar, Rge_le in H; rewrite Ropp_involutive in H;
  rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
  apply Rge_le in Hle; apply Rsqr_incr_1; assumption.
Qed.

Lemma neg_pos_Rsqr_le : forall x y:R, - y <= x -> x <= y -> Rsqr x <= Rsqr y.
Proof.
  intros x y H H0; destruct (Rcase_abs x) as [Hlt|Hle].
  apply Ropp_lt_gt_contravar, Rlt_le in Hlt; rewrite Ropp_0 in Hlt;
  apply Ropp_le_ge_contravar, Rge_le in H; rewrite Ropp_involutive in H.
  assert (0 <= y) by (apply Rle_trans with (-x); assumption).
  rewrite (Rsqr_neg x); apply Rsqr_incr_1; assumption.
  apply Rge_le in Hle;
  assert (0 <= y) by (apply Rle_trans with x; assumption).
  apply Rsqr_incr_1; assumption.
Qed.

Lemma Rsqr_abs : forall x:R, Rsqr x = Rsqr (Rabs x).
Proof.
  intro; unfold Rabs; case (Rcase_abs x); intro;
    [ apply Rsqr_neg | reflexivity ].
Qed.

Lemma Rsqr_le_abs_0 : forall x y:R, Rsqr x <= Rsqr y -> Rabs x <= Rabs y.
Proof.
  intros; apply Rsqr_incr_0; repeat rewrite <- Rsqr_abs;
    [ assumption | apply Rabs_pos | apply Rabs_pos ].
Qed.

Lemma Rsqr_le_abs_1 : forall x y:R, Rabs x <= Rabs y -> Rsqr x <= Rsqr y.
Proof.
  intros; rewrite (Rsqr_abs x); rewrite (Rsqr_abs y);
    apply (Rsqr_incr_1 (Rabs x) (Rabs y) H (Rabs_pos x) (Rabs_pos y)).
Qed.

Lemma Rsqr_lt_abs_0 : forall x y:R, Rsqr x < Rsqr y -> Rabs x < Rabs y.
Proof.
  intros; apply Rsqr_incrst_0; repeat rewrite <- Rsqr_abs;
    [ assumption | apply Rabs_pos | apply Rabs_pos ].
Qed.

Lemma Rsqr_lt_abs_1 : forall x y:R, Rabs x < Rabs y -> Rsqr x < Rsqr y.
Proof.
  intros; rewrite (Rsqr_abs x); rewrite (Rsqr_abs y);
    apply (Rsqr_incrst_1 (Rabs x) (Rabs y) H (Rabs_pos x) (Rabs_pos y)).
Qed.

Lemma Rsqr_inj : forall x y:R, 0 <= x -> 0 <= y -> Rsqr x = Rsqr y -> x = y.
Proof.
  intros; generalize (Rle_le_eq (Rsqr x) (Rsqr y)); intro; elim H2; intros _ H3;
    generalize (H3 H1); intro; elim H4; intros; apply Rle_antisym;
      apply Rsqr_incr_0; assumption.
Qed.

Lemma Rsqr_eq_abs_0 : forall x y:R, Rsqr x = Rsqr y -> Rabs x = Rabs y.
Proof.
  intros; unfold Rabs; case (Rcase_abs x) as [Hltx|Hgex];
    case (Rcase_abs y) as [Hlty|Hgey].
  rewrite (Rsqr_neg x), (Rsqr_neg y) in H;
    generalize (Ropp_lt_gt_contravar y 0 Hlty);
      generalize (Ropp_lt_gt_contravar x 0 Hltx); rewrite Ropp_0;
        intros; generalize (Rlt_le 0 (- x) H0); generalize (Rlt_le 0 (- y) H1);
          intros; apply Rsqr_inj; assumption.
  rewrite (Rsqr_neg x) in H; generalize (Rge_le y 0 Hgey); intro;
    generalize (Ropp_lt_gt_contravar x 0 Hltx); rewrite Ropp_0;
      intro; generalize (Rlt_le 0 (- x) H1); intro; apply Rsqr_inj;
        assumption.
  rewrite (Rsqr_neg y) in H; generalize (Rge_le x 0 Hgex); intro;
    generalize (Ropp_lt_gt_contravar y 0 Hlty); rewrite Ropp_0;
      intro; generalize (Rlt_le 0 (- y) H1); intro; apply Rsqr_inj;
        assumption.
  apply Rsqr_inj; auto using Rge_le.
Qed.

Lemma Rsqr_eq_asb_1 : forall x y:R, Rabs x = Rabs y -> Rsqr x = Rsqr y.
Proof.
  intros; cut (Rsqr (Rabs x) = Rsqr (Rabs y)).
  intro; repeat rewrite <- Rsqr_abs in H0; assumption.
  rewrite H; reflexivity.
Qed.

Lemma triangle_rectangle :
  forall x y z:R,
    0 <= z -> Rsqr x + Rsqr y <= Rsqr z -> - z <= x <= z /\ - z <= y <= z.
Proof.
  intros;
    generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (Rle_0_sqr y) H0);
      rewrite Rplus_comm in H0;
        generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (Rle_0_sqr x) H0);
          intros; split;
            [ split;
              [ apply Rsqr_neg_pos_le_0; assumption
                | apply Rsqr_incr_0_var; assumption ]
              | split;
                [ apply Rsqr_neg_pos_le_0; assumption
                  | apply Rsqr_incr_0_var; assumption ] ].
Qed.

Lemma triangle_rectangle_lt :
  forall x y z:R,
    Rsqr x + Rsqr y < Rsqr z -> Rabs x < Rabs z /\ Rabs y < Rabs z.
Proof.
  intros; split;
    [ generalize (plus_lt_is_lt (Rsqr x) (Rsqr y) (Rsqr z) (Rle_0_sqr y) H);
      intro; apply Rsqr_lt_abs_0; assumption
      | rewrite Rplus_comm in H;
        generalize (plus_lt_is_lt (Rsqr y) (Rsqr x) (Rsqr z) (Rle_0_sqr x) H);
          intro; apply Rsqr_lt_abs_0; assumption ].
Qed.

Lemma triangle_rectangle_le :
  forall x y z:R,
    Rsqr x + Rsqr y <= Rsqr z -> Rabs x <= Rabs z /\ Rabs y <= Rabs z.
Proof.
  intros; split;
    [ generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (Rle_0_sqr y) H);
      intro; apply Rsqr_le_abs_0; assumption
      | rewrite Rplus_comm in H;
        generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (Rle_0_sqr x) H);
          intro; apply Rsqr_le_abs_0; assumption ].
Qed.

Lemma Rsqr_inv : forall x:R, x <> 0 -> Rsqr (/ x) = / Rsqr x.
Proof.
  intros; unfold Rsqr.
  rewrite Rinv_mult_distr; try reflexivity || assumption.
Qed.

Lemma canonical_Rsqr :
  forall (a:nonzeroreal) (b c x:R),
    a * Rsqr x + b * x + c =
    a * Rsqr (x + b / (2 * a)) + (4 * a * c - Rsqr b) / (4 * a).
Proof.
  intros.
  rewrite Rsqr_plus.
  repeat rewrite Rmult_plus_distr_l.
  repeat rewrite Rplus_assoc.
  apply Rplus_eq_compat_l.
  unfold Rdiv, Rminus.
  replace (2 * 1 + 2 * 1) with 4; [ idtac | ring ].
  rewrite (Rmult_plus_distr_r (4 * a * c) (- Rsqr b) (/ (4 * a))).
  rewrite Rsqr_mult.
  repeat rewrite Rinv_mult_distr.
  repeat rewrite (Rmult_comm a).
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  rewrite (Rmult_comm 2).
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  rewrite (Rmult_comm (/ 2)).
  rewrite (Rmult_comm 2).
  repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  rewrite (Rmult_comm a).
  repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  rewrite (Rmult_comm 2).
  repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  repeat rewrite Rplus_assoc.
  rewrite (Rplus_comm (Rsqr b * (Rsqr (/ a * / 2) * a))).
  repeat rewrite Rplus_assoc.
  rewrite (Rmult_comm x).
  apply Rplus_eq_compat_l.
  rewrite (Rmult_comm (/ a)).
  unfold Rsqr; repeat rewrite Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r.
  ring.
  apply (cond_nonzero a).
  discrR.
  apply (cond_nonzero a).
  discrR.
  discrR.
  apply (cond_nonzero a).
  discrR.
  discrR.
  discrR.
  apply (cond_nonzero a).
  discrR.
  apply (cond_nonzero a).
Qed.

Lemma Rsqr_eq : forall x y:R, Rsqr x = Rsqr y -> x = y \/ x = - y.
Proof.
  intros; unfold Rsqr in H;
    generalize (Rplus_eq_compat_l (- (y * y)) (x * x) (y * y) H);
      rewrite Rplus_opp_l; replace (- (y * y) + x * x) with ((x - y) * (x + y)).
  intro; generalize (Rmult_integral (x - y) (x + y) H0); intro; elim H1; intros.
  left; apply Rminus_diag_uniq; assumption.
  right; apply Rminus_diag_uniq; unfold Rminus; rewrite Ropp_involutive;
    assumption.
  ring.
Qed.