1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: R_Ifp.v 9245 2006-10-17 12:53:34Z notin $ i*)
(**********************************************************)
(** Complements for the reals.Integer and fractional part *)
(* *)
(**********************************************************)
Require Import Rbase.
Require Import Omega.
Open Local Scope R_scope.
(*********************************************************)
(** * Fractional part *)
(*********************************************************)
(**********)
Definition Int_part (r:R) : Z := (up r - 1)%Z.
(**********)
Definition frac_part (r:R) : R := r - IZR (Int_part r).
(**********)
Lemma tech_up : forall (r:R) (z:Z), r < IZR z -> IZR z <= r + 1 -> z = up r.
Proof.
intros; generalize (archimed r); intro; elim H1; intros; clear H1;
unfold Rgt in H2; unfold Rminus in H3;
generalize (Rplus_le_compat_l r (IZR (up r) + - r) 1 H3);
intro; clear H3; rewrite (Rplus_comm (IZR (up r)) (- r)) in H1;
rewrite <- (Rplus_assoc r (- r) (IZR (up r))) in H1;
rewrite (Rplus_opp_r r) in H1; elim (Rplus_ne (IZR (up r)));
intros a b; rewrite b in H1; clear a b; apply (single_z_r_R1 r z (up r));
auto with zarith real.
Qed.
(**********)
Lemma up_tech :
forall (r:R) (z:Z), IZR z <= r -> r < IZR (z + 1) -> (z + 1)%Z = up r.
Proof.
intros; generalize (Rplus_le_compat_l 1 (IZR z) r H); intro; clear H;
rewrite (Rplus_comm 1 (IZR z)) in H1; rewrite (Rplus_comm 1 r) in H1;
cut (1 = IZR 1); auto with zarith real.
intro; generalize H1; pattern 1 at 1 in |- *; rewrite H; intro; clear H H1;
rewrite <- (plus_IZR z 1) in H2; apply (tech_up r (z + 1));
auto with zarith real.
Qed.
(**********)
Lemma fp_R0 : frac_part 0 = 0.
Proof.
unfold frac_part in |- *; unfold Int_part in |- *; elim (archimed 0); intros;
unfold Rminus in |- *; elim (Rplus_ne (- IZR (up 0 - 1)));
intros a b; rewrite b; clear a b; rewrite <- Z_R_minus;
cut (up 0 = 1%Z).
intro; rewrite H1;
rewrite (Rminus_diag_eq (IZR 1) (IZR 1) (refl_equal (IZR 1)));
apply Ropp_0.
elim (archimed 0); intros; clear H2; unfold Rgt in H1;
rewrite (Rminus_0_r (IZR (up 0))) in H0; generalize (lt_O_IZR (up 0) H1);
intro; clear H1; generalize (le_IZR_R1 (up 0) H0);
intro; clear H H0; omega.
Qed.
(**********)
Lemma for_base_fp : forall r:R, IZR (up r) - r > 0 /\ IZR (up r) - r <= 1.
Proof.
intro; split; cut (IZR (up r) > r /\ IZR (up r) - r <= 1).
intro; elim H; intros.
apply (Rgt_minus (IZR (up r)) r H0).
apply archimed.
intro; elim H; intros.
exact H1.
apply archimed.
Qed.
(**********)
Lemma base_fp : forall r:R, frac_part r >= 0 /\ frac_part r < 1.
Proof.
intro; unfold frac_part in |- *; unfold Int_part in |- *; split.
(*sup a O*)
cut (r - IZR (up r) >= -1).
rewrite <- Z_R_minus; simpl in |- *; intro; unfold Rminus in |- *;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
fold (r - IZR (up r)) in |- *; fold (r - IZR (up r) - -1) in |- *;
apply Rge_minus; auto with zarith real.
rewrite <- Ropp_minus_distr; apply Ropp_le_ge_contravar; elim (for_base_fp r);
auto with zarith real.
(*inf a 1*)
cut (r - IZR (up r) < 0).
rewrite <- Z_R_minus; simpl in |- *; intro; unfold Rminus in |- *;
rewrite Ropp_plus_distr; rewrite <- Rplus_assoc;
fold (r - IZR (up r)) in |- *; rewrite Ropp_involutive;
elim (Rplus_ne 1); intros a b; pattern 1 at 2 in |- *;
rewrite <- a; clear a b; rewrite (Rplus_comm (r - IZR (up r)) 1);
apply Rplus_lt_compat_l; auto with zarith real.
elim (for_base_fp r); intros; rewrite <- Ropp_0; rewrite <- Ropp_minus_distr;
apply Ropp_gt_lt_contravar; auto with zarith real.
Qed.
(*********************************************************)
(** * Properties *)
(*********************************************************)
(**********)
Lemma base_Int_part :
forall r:R, IZR (Int_part r) <= r /\ IZR (Int_part r) - r > -1.
Proof.
intro; unfold Int_part in |- *; elim (archimed r); intros.
split; rewrite <- (Z_R_minus (up r) 1); simpl in |- *.
generalize (Rle_minus (IZR (up r) - r) 1 H0); intro; unfold Rminus in H1;
rewrite (Rplus_assoc (IZR (up r)) (- r) (-1)) in H1;
rewrite (Rplus_comm (- r) (-1)) in H1;
rewrite <- (Rplus_assoc (IZR (up r)) (-1) (- r)) in H1;
fold (IZR (up r) - 1) in H1; fold (IZR (up r) - 1 - r) in H1;
apply Rminus_le; auto with zarith real.
generalize (Rplus_gt_compat_l (-1) (IZR (up r)) r H); intro;
rewrite (Rplus_comm (-1) (IZR (up r))) in H1;
generalize (Rplus_gt_compat_l (- r) (IZR (up r) + -1) (-1 + r) H1);
intro; clear H H0 H1; rewrite (Rplus_comm (- r) (IZR (up r) + -1)) in H2;
fold (IZR (up r) - 1) in H2; fold (IZR (up r) - 1 - r) in H2;
rewrite (Rplus_comm (- r) (-1 + r)) in H2;
rewrite (Rplus_assoc (-1) r (- r)) in H2; rewrite (Rplus_opp_r r) in H2;
elim (Rplus_ne (-1)); intros a b; rewrite a in H2;
clear a b; auto with zarith real.
Qed.
(**********)
Lemma Int_part_INR : forall n:nat, Int_part (INR n) = Z_of_nat n.
Proof.
intros n; unfold Int_part in |- *.
cut (up (INR n) = (Z_of_nat n + Z_of_nat 1)%Z).
intros H'; rewrite H'; simpl in |- *; ring.
apply sym_equal; apply tech_up; auto.
replace (Z_of_nat n + Z_of_nat 1)%Z with (Z_of_nat (S n)).
repeat rewrite <- INR_IZR_INZ.
apply lt_INR; auto.
rewrite Zplus_comm; rewrite <- Znat.inj_plus; simpl in |- *; auto.
rewrite plus_IZR; simpl in |- *; auto with real.
repeat rewrite <- INR_IZR_INZ; auto with real.
Qed.
(**********)
Lemma fp_nat : forall r:R, frac_part r = 0 -> exists c : Z, r = IZR c.
Proof.
unfold frac_part in |- *; intros; split with (Int_part r);
apply Rminus_diag_uniq; auto with zarith real.
Qed.
(**********)
Lemma R0_fp_O : forall r:R, 0 <> frac_part r -> 0 <> r.
Proof.
red in |- *; intros; rewrite <- H0 in H; generalize fp_R0; intro;
auto with zarith real.
Qed.
(**********)
Lemma Rminus_Int_part1 :
forall r1 r2:R,
frac_part r1 >= frac_part r2 ->
Int_part (r1 - r2) = (Int_part r1 - Int_part r2)%Z.
Proof.
intros; elim (base_fp r1); elim (base_fp r2); intros;
generalize (Rge_le (frac_part r2) 0 H0); intro; clear H0;
generalize (Ropp_le_ge_contravar 0 (frac_part r2) H4);
intro; clear H4; rewrite Ropp_0 in H0;
generalize (Rge_le 0 (- frac_part r2) H0); intro;
clear H0; generalize (Rge_le (frac_part r1) 0 H2);
intro; clear H2; generalize (Ropp_lt_gt_contravar (frac_part r2) 1 H1);
intro; clear H1; unfold Rgt in H2;
generalize
(sum_inequa_Rle_lt 0 (frac_part r1) 1 (-1) (- frac_part r2) 0 H0 H3 H2 H4);
intro; elim H1; intros; clear H1; elim (Rplus_ne 1);
intros a b; rewrite a in H6; clear a b H5;
generalize (Rge_minus (frac_part r1) (frac_part r2) H);
intro; clear H; fold (frac_part r1 - frac_part r2) in H6;
generalize (Rge_le (frac_part r1 - frac_part r2) 0 H1);
intro; clear H1 H3 H4 H0 H2; unfold frac_part in H6, H;
unfold Rminus in H6, H;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H; rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H;
fold (r1 - r2) in H; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H;
generalize
(Rplus_le_compat_l (IZR (Int_part r1) - IZR (Int_part r2)) 0
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) H);
intro; clear H;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H0; unfold Rminus in H0; fold (r1 - r2) in H0;
rewrite
(Rplus_assoc (IZR (Int_part r1)) (- IZR (Int_part r2))
(IZR (Int_part r2) + - IZR (Int_part r1))) in H0;
rewrite <-
(Rplus_assoc (- IZR (Int_part r2)) (IZR (Int_part r2))
(- IZR (Int_part r1))) in H0;
rewrite (Rplus_opp_l (IZR (Int_part r2))) in H0;
elim (Rplus_ne (- IZR (Int_part r1))); intros a b;
rewrite b in H0; clear a b;
elim (Rplus_ne (IZR (Int_part r1) + - IZR (Int_part r2)));
intros a b; rewrite a in H0; clear a b;
rewrite (Rplus_opp_r (IZR (Int_part r1))) in H0; elim (Rplus_ne (r1 - r2));
intros a b; rewrite b in H0; clear a b;
fold (IZR (Int_part r1) - IZR (Int_part r2)) in H0;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H6;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H6;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H6;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H6; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H6;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H6;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H6;
rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H6;
fold (r1 - r2) in H6; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H6;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) - IZR (Int_part r2))
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) 1 H6);
intro; clear H6;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H;
rewrite <- (Ropp_minus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H;
rewrite (Rplus_opp_r (IZR (Int_part r1) - IZR (Int_part r2))) in H;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H;
clear a b; rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H;
cut (1 = IZR 1); auto with zarith real.
intro; rewrite H1 in H; clear H1;
rewrite <- (plus_IZR (Int_part r1 - Int_part r2) 1) in H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2) H0 H);
intros; clear H H0; unfold Int_part at 1 in |- *;
omega.
Qed.
(**********)
Lemma Rminus_Int_part2 :
forall r1 r2:R,
frac_part r1 < frac_part r2 ->
Int_part (r1 - r2) = (Int_part r1 - Int_part r2 - 1)%Z.
Proof.
intros; elim (base_fp r1); elim (base_fp r2); intros;
generalize (Rge_le (frac_part r2) 0 H0); intro; clear H0;
generalize (Ropp_le_ge_contravar 0 (frac_part r2) H4);
intro; clear H4; rewrite Ropp_0 in H0;
generalize (Rge_le 0 (- frac_part r2) H0); intro;
clear H0; generalize (Rge_le (frac_part r1) 0 H2);
intro; clear H2; generalize (Ropp_lt_gt_contravar (frac_part r2) 1 H1);
intro; clear H1; unfold Rgt in H2;
generalize
(sum_inequa_Rle_lt 0 (frac_part r1) 1 (-1) (- frac_part r2) 0 H0 H3 H2 H4);
intro; elim H1; intros; clear H1; elim (Rplus_ne (-1));
intros a b; rewrite b in H5; clear a b H6;
generalize (Rlt_minus (frac_part r1) (frac_part r2) H);
intro; clear H; fold (frac_part r1 - frac_part r2) in H5;
clear H3 H4 H0 H2; unfold frac_part in H5, H1; unfold Rminus in H5, H1;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H5;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H5;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H5;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H5; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H5;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H5;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H5;
rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H5;
fold (r1 - r2) in H5; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H5;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) - IZR (Int_part r2)) (-1)
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) H5);
intro; clear H5;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H; unfold Rminus in H; fold (r1 - r2) in H;
rewrite
(Rplus_assoc (IZR (Int_part r1)) (- IZR (Int_part r2))
(IZR (Int_part r2) + - IZR (Int_part r1))) in H;
rewrite <-
(Rplus_assoc (- IZR (Int_part r2)) (IZR (Int_part r2))
(- IZR (Int_part r1))) in H;
rewrite (Rplus_opp_l (IZR (Int_part r2))) in H;
elim (Rplus_ne (- IZR (Int_part r1))); intros a b;
rewrite b in H; clear a b; rewrite (Rplus_opp_r (IZR (Int_part r1))) in H;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H;
clear a b; fold (IZR (Int_part r1) - IZR (Int_part r2)) in H;
fold (IZR (Int_part r1) - IZR (Int_part r2) - 1) in H;
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2))) in H1;
rewrite (Ropp_involutive (IZR (Int_part r2))) in H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)))
in H1;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)))
in H1; rewrite (Rplus_comm (- IZR (Int_part r1)) (- r2)) in H1;
rewrite (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
rewrite <- (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)))
in H1;
rewrite (Rplus_comm (- IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
fold (r1 - r2) in H1; fold (IZR (Int_part r2) - IZR (Int_part r1)) in H1;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) - IZR (Int_part r2))
(r1 - r2 + (IZR (Int_part r2) - IZR (Int_part r1))) 0 H1);
intro; clear H1;
rewrite (Rplus_comm (r1 - r2) (IZR (Int_part r2) - IZR (Int_part r1))) in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2))
(IZR (Int_part r2) - IZR (Int_part r1)) (r1 - r2))
in H0;
rewrite <- (Ropp_minus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H0;
rewrite (Rplus_opp_r (IZR (Int_part r1) - IZR (Int_part r2))) in H0;
elim (Rplus_ne (r1 - r2)); intros a b; rewrite b in H0;
clear a b; rewrite <- (Rplus_opp_l 1) in H0;
rewrite <- (Rplus_assoc (IZR (Int_part r1) - IZR (Int_part r2)) (-1) 1)
in H0; fold (IZR (Int_part r1) - IZR (Int_part r2) - 1) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H0;
rewrite (Z_R_minus (Int_part r1) (Int_part r2)) in H;
cut (1 = IZR 1); auto with zarith real.
intro; rewrite H1 in H; rewrite H1 in H0; clear H1;
rewrite (Z_R_minus (Int_part r1 - Int_part r2) 1) in H;
rewrite (Z_R_minus (Int_part r1 - Int_part r2) 1) in H0;
rewrite <- (plus_IZR (Int_part r1 - Int_part r2 - 1) 1) in H0;
generalize (Rlt_le (IZR (Int_part r1 - Int_part r2 - 1)) (r1 - r2) H);
intro; clear H;
generalize (up_tech (r1 - r2) (Int_part r1 - Int_part r2 - 1) H1 H0);
intros; clear H0 H1; unfold Int_part at 1 in |- *;
omega.
Qed.
(**********)
Lemma Rminus_fp1 :
forall r1 r2:R,
frac_part r1 >= frac_part r2 ->
frac_part (r1 - r2) = frac_part r1 - frac_part r2.
Proof.
intros; unfold frac_part in |- *; generalize (Rminus_Int_part1 r1 r2 H);
intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));
unfold Rminus in |- *;
rewrite (Ropp_plus_distr (IZR (Int_part r1)) (- IZR (Int_part r2)));
rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2)));
rewrite (Ropp_involutive (IZR (Int_part r2)));
rewrite (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)));
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)));
rewrite (Rplus_comm (- r2) (- IZR (Int_part r1)));
auto with zarith real.
Qed.
(**********)
Lemma Rminus_fp2 :
forall r1 r2:R,
frac_part r1 < frac_part r2 ->
frac_part (r1 - r2) = frac_part r1 - frac_part r2 + 1.
Proof.
intros; unfold frac_part in |- *; generalize (Rminus_Int_part2 r1 r2 H);
intro; rewrite H0; rewrite <- (Z_R_minus (Int_part r1 - Int_part r2) 1);
rewrite <- (Z_R_minus (Int_part r1) (Int_part r2));
unfold Rminus in |- *;
rewrite
(Ropp_plus_distr (IZR (Int_part r1) + - IZR (Int_part r2)) (- IZR 1))
; rewrite (Ropp_plus_distr r2 (- IZR (Int_part r2)));
rewrite (Ropp_involutive (IZR 1));
rewrite (Ropp_involutive (IZR (Int_part r2)));
rewrite (Ropp_plus_distr (IZR (Int_part r1)));
rewrite (Ropp_involutive (IZR (Int_part r2))); simpl in |- *;
rewrite <-
(Rplus_assoc (r1 + - r2) (- IZR (Int_part r1) + IZR (Int_part r2)) 1)
; rewrite (Rplus_assoc r1 (- r2) (- IZR (Int_part r1) + IZR (Int_part r2)));
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (- r2 + IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- r2) (- IZR (Int_part r1)) (IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- r2) (IZR (Int_part r2)));
rewrite (Rplus_comm (- r2) (- IZR (Int_part r1)));
auto with zarith real.
Qed.
(**********)
Lemma plus_Int_part1 :
forall r1 r2:R,
frac_part r1 + frac_part r2 >= 1 ->
Int_part (r1 + r2) = (Int_part r1 + Int_part r2 + 1)%Z.
Proof.
intros; generalize (Rge_le (frac_part r1 + frac_part r2) 1 H); intro; clear H;
elim (base_fp r1); elim (base_fp r2); intros; clear H H2;
generalize (Rplus_lt_compat_l (frac_part r2) (frac_part r1) 1 H3);
intro; clear H3; generalize (Rplus_lt_compat_l 1 (frac_part r2) 1 H1);
intro; clear H1; rewrite (Rplus_comm 1 (frac_part r2)) in H2;
generalize
(Rlt_trans (frac_part r2 + frac_part r1) (frac_part r2 + 1) 2 H H2);
intro; clear H H2; rewrite (Rplus_comm (frac_part r2) (frac_part r1)) in H1;
unfold frac_part in H0, H1; unfold Rminus in H0, H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H1; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H1;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2)
in H1;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H1;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H1;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H0; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H0;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2)
in H0;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H0;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H0;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H0;
generalize
(Rplus_le_compat_l (IZR (Int_part r1) + IZR (Int_part r2)) 1
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) H0);
intro; clear H0;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) + IZR (Int_part r2))
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) 2 H1);
intro; clear H1;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H;
clear a b;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H0; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H0;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H0;
clear a b;
rewrite <- (Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2)) 1 1) in H0;
cut (1 = IZR 1); auto with zarith real.
intro; rewrite H1 in H0; rewrite H1 in H; clear H1;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H0;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H0;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2 + 1) 1) in H0;
generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2 + 1) H H0);
intro; clear H H0; unfold Int_part at 1 in |- *; omega.
Qed.
(**********)
Lemma plus_Int_part2 :
forall r1 r2:R,
frac_part r1 + frac_part r2 < 1 ->
Int_part (r1 + r2) = (Int_part r1 + Int_part r2)%Z.
Proof.
intros; elim (base_fp r1); elim (base_fp r2); intros; clear H1 H3;
generalize (Rge_le (frac_part r2) 0 H0); intro; clear H0;
generalize (Rge_le (frac_part r1) 0 H2); intro; clear H2;
generalize (Rplus_le_compat_l (frac_part r1) 0 (frac_part r2) H1);
intro; clear H1; elim (Rplus_ne (frac_part r1)); intros a b;
rewrite a in H2; clear a b;
generalize (Rle_trans 0 (frac_part r1) (frac_part r1 + frac_part r2) H0 H2);
intro; clear H0 H2; unfold frac_part in H, H1; unfold Rminus in H, H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H1; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H1;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2)
in H1;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H1;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H1;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H1;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)))
in H; rewrite (Rplus_comm r2 (- IZR (Int_part r2))) in H;
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2) in H;
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2) in H;
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)))
in H;
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2))) in H;
generalize
(Rplus_le_compat_l (IZR (Int_part r1) + IZR (Int_part r2)) 0
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) H1);
intro; clear H1;
generalize
(Rplus_lt_compat_l (IZR (Int_part r1) + IZR (Int_part r2))
(r1 + r2 + - (IZR (Int_part r1) + IZR (Int_part r2))) 1 H);
intro; clear H;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H1;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H1; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H1;
elim (Rplus_ne (r1 + r2)); intros a b; rewrite b in H1;
clear a b;
rewrite (Rplus_comm (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))))
in H0;
rewrite <-
(Rplus_assoc (IZR (Int_part r1) + IZR (Int_part r2))
(- (IZR (Int_part r1) + IZR (Int_part r2))) (r1 + r2))
in H0; rewrite (Rplus_opp_r (IZR (Int_part r1) + IZR (Int_part r2))) in H0;
elim (Rplus_ne (IZR (Int_part r1) + IZR (Int_part r2)));
intros a b; rewrite a in H0; clear a b; elim (Rplus_ne (r1 + r2));
intros a b; rewrite b in H0; clear a b; cut (1 = IZR 1);
auto with zarith real.
intro; rewrite H in H1; clear H;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H0;
rewrite <- (plus_IZR (Int_part r1) (Int_part r2)) in H1;
rewrite <- (plus_IZR (Int_part r1 + Int_part r2) 1) in H1;
generalize (up_tech (r1 + r2) (Int_part r1 + Int_part r2) H0 H1);
intro; clear H0 H1; unfold Int_part at 1 in |- *;
omega.
Qed.
(**********)
Lemma plus_frac_part1 :
forall r1 r2:R,
frac_part r1 + frac_part r2 >= 1 ->
frac_part (r1 + r2) = frac_part r1 + frac_part r2 - 1.
Proof.
intros; unfold frac_part in |- *; generalize (plus_Int_part1 r1 r2 H); intro;
rewrite H0; rewrite (plus_IZR (Int_part r1 + Int_part r2) 1);
rewrite (plus_IZR (Int_part r1) (Int_part r2)); simpl in |- *;
unfold Rminus at 3 4 in |- *;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)));
rewrite (Rplus_comm r2 (- IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2);
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2);
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)));
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
unfold Rminus in |- *;
rewrite
(Rplus_assoc (r1 + r2) (- (IZR (Int_part r1) + IZR (Int_part r2))) (-1))
; rewrite <- (Ropp_plus_distr (IZR (Int_part r1) + IZR (Int_part r2)) 1);
trivial with zarith real.
Qed.
(**********)
Lemma plus_frac_part2 :
forall r1 r2:R,
frac_part r1 + frac_part r2 < 1 ->
frac_part (r1 + r2) = frac_part r1 + frac_part r2.
Proof.
intros; unfold frac_part in |- *; generalize (plus_Int_part2 r1 r2 H); intro;
rewrite H0; rewrite (plus_IZR (Int_part r1) (Int_part r2));
unfold Rminus at 2 3 in |- *;
rewrite (Rplus_assoc r1 (- IZR (Int_part r1)) (r2 + - IZR (Int_part r2)));
rewrite (Rplus_comm r2 (- IZR (Int_part r2)));
rewrite <- (Rplus_assoc (- IZR (Int_part r1)) (- IZR (Int_part r2)) r2);
rewrite (Rplus_comm (- IZR (Int_part r1) + - IZR (Int_part r2)) r2);
rewrite <- (Rplus_assoc r1 r2 (- IZR (Int_part r1) + - IZR (Int_part r2)));
rewrite <- (Ropp_plus_distr (IZR (Int_part r1)) (IZR (Int_part r2)));
unfold Rminus in |- *; trivial with zarith real.
Qed.
|