summaryrefslogtreecommitdiff
path: root/theories/Reals/Alembert.v
blob: 09aad1ecb33e6be1f4ece03b05ccf312d7f06196 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import SeqProp.
Require Import PartSum.
Require Import Max.

Local Open Scope R_scope.

(***************************************************)
(* Various versions of the criterion of D'Alembert *)
(***************************************************)

Lemma Alembert_C1 :
  forall An:nat -> R,
    (forall n:nat, 0 < An n) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
    { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
  intros An H H0.
  cut
    ({ l:R | is_lub (EUn (fun N:nat => sum_f_R0 An N)) l } ->
      { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
  intro X; apply X.
  apply completeness.
  unfold Un_cv in H0; unfold bound; cut (0 < / 2);
    [ intro | apply Rinv_0_lt_compat; prove_sup0 ].
  elim (H0 (/ 2) H1); intros.
  exists (sum_f_R0 An x + 2 * An (S x)).
  unfold is_upper_bound; intros; unfold EUn in H3; destruct H3 as (x1,->).
  destruct (lt_eq_lt_dec x1 x) as [[| -> ]|].
  replace (sum_f_R0 An x) with
    (sum_f_R0 An x1 + sum_f_R0 (fun i:nat => An (S x1 + i)%nat) (x - S x1)).
  pattern (sum_f_R0 An x1) at 1; rewrite <- Rplus_0_r;
    rewrite Rplus_assoc; apply Rplus_le_compat_l.
  left; apply Rplus_lt_0_compat.
  apply tech1; intros; apply H.
  apply Rmult_lt_0_compat; [ prove_sup0 | apply H ].
  symmetry ; apply tech2; assumption.
  pattern (sum_f_R0 An x) at 1; rewrite <- Rplus_0_r;
    apply Rplus_le_compat_l.
  left; apply Rmult_lt_0_compat; [ prove_sup0 | apply H ].
  replace (sum_f_R0 An x1) with
    (sum_f_R0 An x + sum_f_R0 (fun i:nat => An (S x + i)%nat) (x1 - S x)).
  apply Rplus_le_compat_l.
  cut
    (sum_f_R0 (fun i:nat => An (S x + i)%nat) (x1 - S x) <=
      An (S x) * sum_f_R0 (fun i:nat => (/ 2) ^ i) (x1 - S x)).
  intro;
    apply Rle_trans with
      (An (S x) * sum_f_R0 (fun i:nat => (/ 2) ^ i) (x1 - S x)).
  assumption.
  rewrite <- (Rmult_comm (An (S x))); apply Rmult_le_compat_l.
  left; apply H.
  rewrite tech3.
  replace (1 - / 2) with (/ 2).
  unfold Rdiv; rewrite Rinv_involutive.
  pattern 2 at 3; rewrite <- Rmult_1_r; rewrite <- (Rmult_comm 2);
    apply Rmult_le_compat_l.
  left; prove_sup0.
  left; apply Rplus_lt_reg_l with ((/ 2) ^ S (x1 - S x)).
  replace ((/ 2) ^ S (x1 - S x) + (1 - (/ 2) ^ S (x1 - S x))) with 1;
    [ idtac | ring ].
  rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r;
    apply Rplus_lt_compat_l.
  apply pow_lt; apply Rinv_0_lt_compat; prove_sup0.
  discrR.
  apply Rmult_eq_reg_l with 2.
  rewrite Rmult_minus_distr_l; rewrite <- Rinv_r_sym.
  ring.
  discrR.
  discrR.
  replace 1 with (/ 1);
    [ apply tech7; discrR | apply Rinv_1 ].
  replace (An (S x)) with (An (S x + 0)%nat).
  apply (tech6 (fun i:nat => An (S x + i)%nat) (/ 2)).
  left; apply Rinv_0_lt_compat; prove_sup0.
  intro; cut (forall n:nat, (n >= x)%nat -> An (S n) < / 2 * An n).
  intro H4; replace (S x + S i)%nat with (S (S x + i)).
  apply H4; unfold ge; apply tech8.
  apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring.
  intros; unfold R_dist in H2; apply Rmult_lt_reg_l with (/ An n).
  apply Rinv_0_lt_compat; apply H.
  do 2 rewrite (Rmult_comm (/ An n)); rewrite Rmult_assoc;
    rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r;
    replace (An (S n) * / An n) with (Rabs (Rabs (An (S n) / An n) - 0)).
  apply H2; assumption.
  unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r;
    rewrite Rabs_Rabsolu; rewrite Rabs_right.
  unfold Rdiv; reflexivity.
  left; unfold Rdiv; change (0 < An (S n) * / An n);
    apply Rmult_lt_0_compat; [ apply H | apply Rinv_0_lt_compat; apply H ].
  intro H5; assert (H8 := H n); rewrite H5 in H8;
    elim (Rlt_irrefl _ H8).
  replace (S x + 0)%nat with (S x); [ reflexivity | ring ].
  symmetry ; apply tech2; assumption.
  exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity.
  intros (x,H1).
  exists x; apply Un_cv_crit_lub;
    [ unfold Un_growing; intro; rewrite tech5;
      pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
	apply Rplus_le_compat_l; left; apply H
      | apply H1 ].
Defined.

Lemma Alembert_C2 :
  forall An:nat -> R,
    (forall n:nat, An n <> 0) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
    { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
  intros.
  set (Vn := fun i:nat => (2 * Rabs (An i) + An i) / 2).
  set (Wn := fun i:nat => (2 * Rabs (An i) - An i) / 2).
  cut (forall n:nat, 0 < Vn n).
  intro; cut (forall n:nat, 0 < Wn n).
  intro; cut (Un_cv (fun n:nat => Rabs (Vn (S n) / Vn n)) 0).
  intro; cut (Un_cv (fun n:nat => Rabs (Wn (S n) / Wn n)) 0).
  intro; pose proof (Alembert_C1 Vn H1 H3) as (x,p).
  pose proof (Alembert_C1 Wn H2 H4) as (x0,p0).
  exists (x - x0); unfold Un_cv; unfold Un_cv in p;
    unfold Un_cv in p0; intros; cut (0 < eps / 2).
  intro H6; destruct (p (eps / 2) H6) as (x1,H8). clear p.
  destruct (p0 (eps / 2) H6) as (x2,H9). clear p0.
  set (N := max x1 x2).
  exists N; intros;
    replace (sum_f_R0 An n) with (sum_f_R0 Vn n - sum_f_R0 Wn n).
  unfold R_dist;
    replace (sum_f_R0 Vn n - sum_f_R0 Wn n - (x - x0)) with
      (sum_f_R0 Vn n - x + - (sum_f_R0 Wn n - x0)); [ idtac | ring ];
      apply Rle_lt_trans with
	(Rabs (sum_f_R0 Vn n - x) + Rabs (- (sum_f_R0 Wn n - x0))).
  apply Rabs_triang.
  rewrite Rabs_Ropp; apply Rlt_le_trans with (eps / 2 + eps / 2).
  apply Rplus_lt_compat.
  unfold R_dist in H8; apply H8; unfold ge; apply le_trans with N;
    [ unfold N; apply le_max_l | assumption ].
  unfold R_dist in H9; apply H9; unfold ge; apply le_trans with N;
    [ unfold N; apply le_max_r | assumption ].
  right; symmetry ; apply double_var.
  symmetry ; apply tech11; intro; unfold Vn, Wn;
    unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2));
      apply Rmult_eq_reg_l with 2.
  rewrite Rmult_minus_distr_l; repeat rewrite <- Rmult_assoc;
    rewrite <- Rinv_r_sym.
  ring.
  discrR.
  discrR.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
  cut (forall n:nat, / 2 * Rabs (An n) <= Wn n <= 3 * / 2 * Rabs (An n)).
  intro; cut (forall n:nat, / Wn n <= 2 * / Rabs (An n)).
  intro; cut (forall n:nat, Wn (S n) / Wn n <= 3 * Rabs (An (S n) / An n)).
  intro; unfold Un_cv; intros; unfold Un_cv in H0; cut (0 < eps / 3).
  intro; elim (H0 (eps / 3) H8); intros.
  exists x; intros.
  assert (H11 := H9 n H10).
  unfold R_dist; unfold Rminus; rewrite Ropp_0;
    rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H11;
      unfold Rminus in H11; rewrite Ropp_0 in H11; rewrite Rplus_0_r in H11;
	rewrite Rabs_Rabsolu in H11; rewrite Rabs_right.
  apply Rle_lt_trans with (3 * Rabs (An (S n) / An n)).
  apply H6.
  apply Rmult_lt_reg_l with (/ 3).
  apply Rinv_0_lt_compat; prove_sup0.
  rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ];
    rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H11;
      exact H11.
  left; change (0 < Wn (S n) / Wn n); unfold Rdiv;
    apply Rmult_lt_0_compat.
  apply H2.
  apply Rinv_0_lt_compat; apply H2.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
  intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc;
    replace 3 with (2 * (3 * / 2));
      [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ];
      apply Rle_trans with (Wn (S n) * 2 * / Rabs (An n)).
  rewrite Rmult_assoc; apply Rmult_le_compat_l.
  left; apply H2.
  apply H5.
  rewrite Rabs_Rinv.
  replace (Wn (S n) * 2 * / Rabs (An n)) with (2 * / Rabs (An n) * Wn (S n));
    [ idtac | ring ];
    replace (2 * (3 * / 2) * Rabs (An (S n)) * / Rabs (An n)) with
      (2 * / Rabs (An n) * (3 * / 2 * Rabs (An (S n))));
      [ idtac | ring ]; apply Rmult_le_compat_l.
  left; apply Rmult_lt_0_compat.
  prove_sup0.
  apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply H.
  elim (H4 (S n)); intros; assumption.
  apply H.
  intro; apply Rmult_le_reg_l with (Wn n).
  apply H2.
  rewrite <- Rinv_r_sym.
  apply Rmult_le_reg_l with (Rabs (An n)).
  apply Rabs_pos_lt; apply H.
  rewrite Rmult_1_r;
    replace (Rabs (An n) * (Wn n * (2 * / Rabs (An n)))) with
      (2 * Wn n * (Rabs (An n) * / Rabs (An n))); [ idtac | ring ];
      rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; apply Rmult_le_reg_l with (/ 2).
  apply Rinv_0_lt_compat; prove_sup0.
  rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; elim (H4 n); intros; assumption.
  discrR.
  apply Rabs_no_R0; apply H.
  red; intro; assert (H6 := H2 n); rewrite H5 in H6;
    elim (Rlt_irrefl _ H6).
  intro; split.
  unfold Wn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
    apply Rmult_le_compat_l.
  left; apply Rinv_0_lt_compat; prove_sup0.
  pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double;
    unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l.
  apply Rplus_le_reg_l with (An n).
  rewrite Rplus_0_r; rewrite (Rplus_comm (An n)); rewrite Rplus_assoc;
    rewrite Rplus_opp_l; rewrite Rplus_0_r; apply RRle_abs.
  unfold Wn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2));
    repeat rewrite Rmult_assoc; apply Rmult_le_compat_l.
  left; apply Rinv_0_lt_compat; prove_sup0.
  unfold Rminus; rewrite double;
    replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n));
      [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l.
  rewrite <- Rabs_Ropp; apply RRle_abs.
  cut (forall n:nat, / 2 * Rabs (An n) <= Vn n <= 3 * / 2 * Rabs (An n)).
  intro; cut (forall n:nat, / Vn n <= 2 * / Rabs (An n)).
  intro; cut (forall n:nat, Vn (S n) / Vn n <= 3 * Rabs (An (S n) / An n)).
  intro; unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / 3).
  intro; elim (H0 (eps / 3) H7); intros.
  exists x; intros.
  assert (H10 := H8 n H9).
  unfold R_dist; unfold Rminus; rewrite Ropp_0;
    rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold R_dist in H10;
      unfold Rminus in H10; rewrite Ropp_0 in H10; rewrite Rplus_0_r in H10;
	rewrite Rabs_Rabsolu in H10; rewrite Rabs_right.
  apply Rle_lt_trans with (3 * Rabs (An (S n) / An n)).
  apply H5.
  apply Rmult_lt_reg_l with (/ 3).
  apply Rinv_0_lt_compat; prove_sup0.
  rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ idtac | discrR ];
    rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H10;
      exact H10.
  left; change (0 < Vn (S n) / Vn n); unfold Rdiv;
    apply Rmult_lt_0_compat.
  apply H1.
  apply Rinv_0_lt_compat; apply H1.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
  intro; unfold Rdiv; rewrite Rabs_mult; rewrite <- Rmult_assoc;
    replace 3 with (2 * (3 * / 2));
      [ idtac | rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR ];
      apply Rle_trans with (Vn (S n) * 2 * / Rabs (An n)).
  rewrite Rmult_assoc; apply Rmult_le_compat_l.
  left; apply H1.
  apply H4.
  rewrite Rabs_Rinv.
  replace (Vn (S n) * 2 * / Rabs (An n)) with (2 * / Rabs (An n) * Vn (S n));
    [ idtac | ring ];
    replace (2 * (3 * / 2) * Rabs (An (S n)) * / Rabs (An n)) with
      (2 * / Rabs (An n) * (3 * / 2 * Rabs (An (S n))));
      [ idtac | ring ]; apply Rmult_le_compat_l.
  left; apply Rmult_lt_0_compat.
  prove_sup0.
  apply Rinv_0_lt_compat; apply Rabs_pos_lt; apply H.
  elim (H3 (S n)); intros; assumption.
  apply H.
  intro; apply Rmult_le_reg_l with (Vn n).
  apply H1.
  rewrite <- Rinv_r_sym.
  apply Rmult_le_reg_l with (Rabs (An n)).
  apply Rabs_pos_lt; apply H.
  rewrite Rmult_1_r;
    replace (Rabs (An n) * (Vn n * (2 * / Rabs (An n)))) with
      (2 * Vn n * (Rabs (An n) * / Rabs (An n))); [ idtac | ring ];
      rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; apply Rmult_le_reg_l with (/ 2).
  apply Rinv_0_lt_compat; prove_sup0.
  rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; elim (H3 n); intros; assumption.
  discrR.
  apply Rabs_no_R0; apply H.
  red; intro; assert (H5 := H1 n); rewrite H4 in H5;
    elim (Rlt_irrefl _ H5).
  intro; split.
  unfold Vn; unfold Rdiv; rewrite <- (Rmult_comm (/ 2));
    apply Rmult_le_compat_l.
  left; apply Rinv_0_lt_compat; prove_sup0.
  pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r; rewrite double;
    rewrite Rplus_assoc; apply Rplus_le_compat_l.
  apply Rplus_le_reg_l with (- An n); rewrite Rplus_0_r;
    rewrite <- (Rplus_comm (An n)); rewrite <- Rplus_assoc;
      rewrite Rplus_opp_l; rewrite Rplus_0_l; rewrite <- Rabs_Ropp;
	apply RRle_abs.
  unfold Vn; unfold Rdiv; repeat rewrite <- (Rmult_comm (/ 2));
    repeat rewrite Rmult_assoc; apply Rmult_le_compat_l.
  left; apply Rinv_0_lt_compat; prove_sup0.
  unfold Rminus; rewrite double;
    replace (3 * Rabs (An n)) with (Rabs (An n) + Rabs (An n) + Rabs (An n));
      [ idtac | ring ]; repeat rewrite Rplus_assoc; repeat apply Rplus_le_compat_l;
	apply RRle_abs.
  intro; unfold Wn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2));
    rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
  apply Rinv_0_lt_compat; prove_sup0.
  apply Rplus_lt_reg_l with (An n); rewrite Rplus_0_r; unfold Rminus;
    rewrite (Rplus_comm (An n)); rewrite Rplus_assoc;
      rewrite Rplus_opp_l; rewrite Rplus_0_r;
	apply Rle_lt_trans with (Rabs (An n)).
  apply RRle_abs.
  rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r;
    apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
  intro; unfold Vn; unfold Rdiv; rewrite <- (Rmult_0_r (/ 2));
    rewrite <- (Rmult_comm (/ 2)); apply Rmult_lt_compat_l.
  apply Rinv_0_lt_compat; prove_sup0.
  apply Rplus_lt_reg_l with (- An n); rewrite Rplus_0_r; unfold Rminus;
    rewrite (Rplus_comm (- An n)); rewrite Rplus_assoc;
      rewrite Rplus_opp_r; rewrite Rplus_0_r;
	apply Rle_lt_trans with (Rabs (An n)).
  rewrite <- Rabs_Ropp; apply RRle_abs.
  rewrite double; pattern (Rabs (An n)) at 1; rewrite <- Rplus_0_r;
    apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
Defined.

Lemma AlembertC3_step1 :
  forall (An:nat -> R) (x:R),
    x <> 0 ->
    (forall n:nat, An n <> 0) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
    { l:R | Pser An x l }.
Proof.
  intros; set (Bn := fun i:nat => An i * x ^ i).
  cut (forall n:nat, Bn n <> 0).
  intro; cut (Un_cv (fun n:nat => Rabs (Bn (S n) / Bn n)) 0).
  intro; destruct (Alembert_C2 Bn H2 H3) as (x0,H4).
  exists x0; unfold Bn in H4; apply tech12; assumption.
  unfold Un_cv; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x).
  intro; elim (H1 (eps / Rabs x) H4); intros.
  exists x0; intros; unfold R_dist; unfold Rminus;
    rewrite Ropp_0; rewrite Rplus_0_r; rewrite Rabs_Rabsolu;
      unfold Bn;
	replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
  rewrite Rabs_mult; apply Rmult_lt_reg_l with (/ Rabs x).
  apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption.
  rewrite <- (Rmult_comm (Rabs x)); rewrite <- Rmult_assoc;
    rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; rewrite <- (Rmult_comm eps); unfold Rdiv in H5;
    replace (Rabs (An (S n) / An n)) with (R_dist (Rabs (An (S n) * / An n)) 0).
  apply H5; assumption.
  unfold R_dist; unfold Rminus; rewrite Ropp_0;
    rewrite Rplus_0_r; rewrite Rabs_Rabsolu; unfold Rdiv;
      reflexivity.
  apply Rabs_no_R0; assumption.
  replace (S n) with (n + 1)%nat; [ idtac | ring ]; rewrite pow_add;
    unfold Rdiv; rewrite Rinv_mult_distr.
  replace (An (n + 1)%nat * (x ^ n * x ^ 1) * (/ An n * / x ^ n)) with
    (An (n + 1)%nat * x ^ 1 * / An n * (x ^ n * / x ^ n));
    [ idtac | ring ]; rewrite <- Rinv_r_sym.
  simpl; ring.
  apply pow_nonzero; assumption.
  apply H0.
  apply pow_nonzero; assumption.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
  intro; unfold Bn; apply prod_neq_R0;
    [ apply H0 | apply pow_nonzero; assumption ].
Defined.

Lemma AlembertC3_step2 :
  forall (An:nat -> R) (x:R), x = 0 -> { l:R | Pser An x l }.
Proof.
  intros; exists (An 0%nat).
  unfold Pser; unfold infinite_sum; intros; exists 0%nat; intros;
    replace (sum_f_R0 (fun n0:nat => An n0 * x ^ n0) n) with (An 0%nat).
  unfold R_dist; unfold Rminus; rewrite Rplus_opp_r;
    rewrite Rabs_R0; assumption.
  induction  n as [| n Hrecn].
  simpl; ring.
  rewrite tech5; rewrite Hrecn;
    [ rewrite H; simpl; ring | unfold ge; apply le_O_n ].
Qed.

(** A useful criterion of convergence for power series *)
Theorem Alembert_C3 :
  forall (An:nat -> R) (x:R),
    (forall n:nat, An n <> 0) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
    { l:R | Pser An x l }.
Proof.
  intros; destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
  cut (x <> 0).
  intro; apply AlembertC3_step1; assumption.
  red; intro; rewrite H1 in Hlt; elim (Rlt_irrefl _ Hlt).
  apply AlembertC3_step2; assumption.
  cut (x <> 0).
  intro; apply AlembertC3_step1; assumption.
  red; intro; rewrite H1 in Hgt; elim (Rlt_irrefl _ Hgt).
Defined.

Lemma Alembert_C4 :
  forall (An:nat -> R) (k:R),
    0 <= k < 1 ->
    (forall n:nat, 0 < An n) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
    { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
  intros An k Hyp H H0.
  cut
    ({ l:R | is_lub (EUn (fun N:nat => sum_f_R0 An N)) l } ->
      { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
  intro X; apply X.
  apply completeness.
  assert (H1 := tech13 _ _ Hyp H0).
  elim H1; intros.
  elim H2; intros.
  elim H4; intros.
  unfold bound; exists (sum_f_R0 An x0 + / (1 - x) * An (S x0)).
  unfold is_upper_bound; intros; unfold EUn in H6.
  elim H6; intros.
  rewrite H7.
  destruct (lt_eq_lt_dec x2 x0) as [[| -> ]|].
  replace (sum_f_R0 An x0) with
    (sum_f_R0 An x2 + sum_f_R0 (fun i:nat => An (S x2 + i)%nat) (x0 - S x2)).
  pattern (sum_f_R0 An x2) at 1; rewrite <- Rplus_0_r.
  rewrite Rplus_assoc; apply Rplus_le_compat_l.
  left; apply Rplus_lt_0_compat.
  apply tech1.
  intros; apply H.
  apply Rmult_lt_0_compat.
  apply Rinv_0_lt_compat; apply Rplus_lt_reg_l with x; rewrite Rplus_0_r;
    replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
  apply H.
  symmetry ; apply tech2; assumption.
  pattern (sum_f_R0 An x0) at 1; rewrite <- Rplus_0_r;
    apply Rplus_le_compat_l.
  left; apply Rmult_lt_0_compat.
  apply Rinv_0_lt_compat; apply Rplus_lt_reg_l with x; rewrite Rplus_0_r;
    replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
  apply H.
  replace (sum_f_R0 An x2) with
    (sum_f_R0 An x0 + sum_f_R0 (fun i:nat => An (S x0 + i)%nat) (x2 - S x0)).
  apply Rplus_le_compat_l.
  cut
    (sum_f_R0 (fun i:nat => An (S x0 + i)%nat) (x2 - S x0) <=
      An (S x0) * sum_f_R0 (fun i:nat => x ^ i) (x2 - S x0)).
  intro;
    apply Rle_trans with (An (S x0) * sum_f_R0 (fun i:nat => x ^ i) (x2 - S x0)).
  assumption.
  rewrite <- (Rmult_comm (An (S x0))); apply Rmult_le_compat_l.
  left; apply H.
  rewrite tech3.
  unfold Rdiv; apply Rmult_le_reg_l with (1 - x).
  apply Rplus_lt_reg_l with x; rewrite Rplus_0_r.
  replace (x + (1 - x)) with 1; [ elim H3; intros; assumption | ring ].
  do 2 rewrite (Rmult_comm (1 - x)).
  rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r; apply Rplus_le_reg_l with (x ^ S (x2 - S x0)).
  replace (x ^ S (x2 - S x0) + (1 - x ^ S (x2 - S x0))) with 1;
    [ idtac | ring ].
  rewrite <- (Rplus_comm 1); pattern 1 at 1; rewrite <- Rplus_0_r;
    apply Rplus_le_compat_l.
  left; apply pow_lt.
  apply Rle_lt_trans with k.
  elim Hyp; intros; assumption.
  elim H3; intros; assumption.
  apply Rminus_eq_contra.
  red; intro H10.
  elim H3; intros H11 H12. 
  rewrite H10 in H12; elim (Rlt_irrefl _ H12).
  red; intro H10.
  elim H3; intros H11 H12.
  rewrite H10 in H12; elim (Rlt_irrefl _ H12).
  replace (An (S x0)) with (An (S x0 + 0)%nat).
  apply (tech6 (fun i:nat => An (S x0 + i)%nat) x).
  left; apply Rle_lt_trans with k.
  elim Hyp; intros; assumption.
  elim H3; intros; assumption.
  intro.
  cut (forall n:nat, (n >= x0)%nat -> An (S n) < x * An n).
  intro H9.
  replace (S x0 + S i)%nat with (S (S x0 + i)).
  apply H9.
  unfold ge.
  apply tech8.
  apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR;
    ring.
  intros.
  apply Rmult_lt_reg_l with (/ An n).
  apply Rinv_0_lt_compat; apply H.
  do 2 rewrite (Rmult_comm (/ An n)).
  rewrite Rmult_assoc.
  rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r.
  replace (An (S n) * / An n) with (Rabs (An (S n) / An n)).
  apply H5; assumption.
  rewrite Rabs_right.
  unfold Rdiv; reflexivity.
  left; unfold Rdiv; change (0 < An (S n) * / An n);
    apply Rmult_lt_0_compat.
  apply H.
  apply Rinv_0_lt_compat; apply H.
  red; intro H10.
  assert (H11 := H n).
  rewrite H10 in H11; elim (Rlt_irrefl _ H11).
  replace (S x0 + 0)%nat with (S x0); [ reflexivity | ring ].
  symmetry ; apply tech2; assumption.
  exists (sum_f_R0 An 0); unfold EUn; exists 0%nat; reflexivity.
  intros (x,H1).
  exists x; apply Un_cv_crit_lub;
    [ unfold Un_growing; intro; rewrite tech5;
      pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r;
	apply Rplus_le_compat_l; left; apply H
      | apply H1].
Qed.

Lemma Alembert_C5 :
  forall (An:nat -> R) (k:R),
    0 <= k < 1 ->
    (forall n:nat, An n <> 0) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
    { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
  intros.
  cut
    ({ l:R | Un_cv (fun N:nat => sum_f_R0 An N) l } ->
      { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
  intro Hyp0; apply Hyp0.
  apply cv_cauchy_2.
  apply cauchy_abs.
  apply cv_cauchy_1.
  cut
    ({ l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l } ->
      { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l }).
  intro Hyp; apply Hyp.
  apply (Alembert_C4 (fun i:nat => Rabs (An i)) k).
  assumption.
  intro; apply Rabs_pos_lt; apply H0.
  unfold Un_cv.
  unfold Un_cv in H1.
  unfold Rdiv.
  intros.
  elim (H1 eps H2); intros.
  exists x; intros.
  rewrite <- Rabs_Rinv.
  rewrite <- Rabs_mult.
  rewrite Rabs_Rabsolu.
  unfold Rdiv in H3; apply H3; assumption.
  apply H0.
  intro X.
  elim X; intros.
  exists x.
  assumption.
  intro X.
  elim X; intros.
  exists x.
  assumption.
Qed.

(** Convergence of power series in D(O,1/k)
    k=0 is described in Alembert_C3     *)
Lemma Alembert_C6 :
  forall (An:nat -> R) (x k:R),
    0 < k ->
    (forall n:nat, An n <> 0) ->
    Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
    Rabs x < / k -> { l:R | Pser An x l }.
Proof.
  intros.
  cut { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l }.
  intro X.
  elim X; intros.
  exists x0.
  apply tech12; assumption.
  destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
  eapply Alembert_C5 with (k * Rabs x).
  split.
  unfold Rdiv; apply Rmult_le_pos.
  left; assumption.
  left; apply Rabs_pos_lt.
  red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt).
  apply Rmult_lt_reg_l with (/ k).
  apply Rinv_0_lt_compat; assumption.
  rewrite <- Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l.
  rewrite Rmult_1_r; assumption.
  red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
  intro; apply prod_neq_R0.
  apply H0.
  apply pow_nonzero.
  red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt).
  unfold Un_cv; unfold Un_cv in H1.
  intros.
  cut (0 < eps / Rabs x).
  intro.
  elim (H1 (eps / Rabs x) H4); intros.
  exists x0.
  intros.
  replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
  unfold R_dist.
  rewrite Rabs_mult.
  replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with
    (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ].
  rewrite Rabs_mult.
  rewrite Rabs_Rabsolu.
  apply Rmult_lt_reg_l with (/ Rabs x).
  apply Rinv_0_lt_compat; apply Rabs_pos_lt.
  red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
  rewrite <- Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l.
  rewrite <- (Rmult_comm eps).
  unfold R_dist in H5.
  unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
  apply Rabs_no_R0.
  red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
  unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
  rewrite pow_add.
  simpl.
  rewrite Rmult_1_r.
  rewrite Rinv_mult_distr.
  replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with
    (An (n + 1)%nat * / An n * x * (x ^ n * / x ^ n));
    [ idtac | ring ].
  rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; reflexivity.
  apply pow_nonzero.
  red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
  apply H0.
  apply pow_nonzero.
  red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
  unfold Rdiv; apply Rmult_lt_0_compat.
  assumption.
  apply Rinv_0_lt_compat; apply Rabs_pos_lt.
  red; intro H7; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
  exists (An 0%nat).
  unfold Un_cv.
  intros.
  exists 0%nat.
  intros.
  unfold R_dist.
  replace (sum_f_R0 (fun i:nat => An i * x ^ i) n) with (An 0%nat).
  unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption.
  induction  n as [| n Hrecn].
  simpl; ring.
  rewrite tech5.
  rewrite <- Hrecn.
  rewrite Heq; simpl; ring.
  unfold ge; apply le_O_n.
  eapply Alembert_C5 with (k * Rabs x).
  split.
  unfold Rdiv; apply Rmult_le_pos.
  left; assumption.
  left; apply Rabs_pos_lt.
  red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt).
  apply Rmult_lt_reg_l with (/ k).
  apply Rinv_0_lt_compat; assumption.
  rewrite <- Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l.
  rewrite Rmult_1_r; assumption.
  red; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
  intro; apply prod_neq_R0.
  apply H0.
  apply pow_nonzero.
  red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt).
  unfold Un_cv; unfold Un_cv in H1.
  intros.
  cut (0 < eps / Rabs x).
  intro.
  elim (H1 (eps / Rabs x) H4); intros.
  exists x0.
  intros.
  replace (An (S n) * x ^ S n / (An n * x ^ n)) with (An (S n) / An n * x).
  unfold R_dist.
  rewrite Rabs_mult.
  replace (Rabs (An (S n) / An n) * Rabs x - k * Rabs x) with
    (Rabs x * (Rabs (An (S n) / An n) - k)); [ idtac | ring ].
  rewrite Rabs_mult.
  rewrite Rabs_Rabsolu.
  apply Rmult_lt_reg_l with (/ Rabs x).
  apply Rinv_0_lt_compat; apply Rabs_pos_lt.
  red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
  rewrite <- Rmult_assoc.
  rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l.
  rewrite <- (Rmult_comm eps).
  unfold R_dist in H5.
  unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
  apply Rabs_no_R0.
  red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
  unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
  rewrite pow_add.
  simpl.
  rewrite Rmult_1_r.
  rewrite Rinv_mult_distr.
  replace (An (n + 1)%nat * (x ^ n * x) * (/ An n * / x ^ n)) with
    (An (n + 1)%nat * / An n * x * (x ^ n * / x ^ n));
    [ idtac | ring ].
  rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; reflexivity.
  apply pow_nonzero.
  red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
  apply H0.
  apply pow_nonzero.
  red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
  unfold Rdiv; apply Rmult_lt_0_compat.
  assumption.
  apply Rinv_0_lt_compat; apply Rabs_pos_lt.
  red; intro H7; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
Qed.