summaryrefslogtreecommitdiff
path: root/theories/PArith/BinPosDef.v
blob: 070314746aa9714bf1d1b4e6238d526ecbffb752 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(**********************************************************************)
(** * Binary positive numbers, operations *)
(**********************************************************************)

(** Initial development by Pierre Crégut, CNET, Lannion, France *)

(** The type [positive] and its constructors [xI] and [xO] and [xH]
    are now defined in [BinNums.v] *)

Require Export BinNums.

(** Postfix notation for positive numbers, which allows mimicking
    the position of bits in a big-endian representation.
    For instance, we can write [1~1~0] instead of [(xO (xI xH))]
    for the number 6 (which is 110 in binary notation).
*)

Notation "p ~ 1" := (xI p)
 (at level 7, left associativity, format "p '~' '1'") : positive_scope.
Notation "p ~ 0" := (xO p)
 (at level 7, left associativity, format "p '~' '0'") : positive_scope.

Local Open Scope positive_scope.

Module Pos.

Definition t := positive.

(** * Operations over positive numbers *)

(** ** Successor *)

Fixpoint succ x :=
  match x with
    | p~1 => (succ p)~0
    | p~0 => p~1
    | 1 => 1~0
  end.

(** ** Addition *)

Fixpoint add x y :=
  match x, y with
    | p~1, q~1 => (add_carry p q)~0
    | p~1, q~0 => (add p q)~1
    | p~1, 1 => (succ p)~0
    | p~0, q~1 => (add p q)~1
    | p~0, q~0 => (add p q)~0
    | p~0, 1 => p~1
    | 1, q~1 => (succ q)~0
    | 1, q~0 => q~1
    | 1, 1 => 1~0
  end

with add_carry x y :=
  match x, y with
    | p~1, q~1 => (add_carry p q)~1
    | p~1, q~0 => (add_carry p q)~0
    | p~1, 1 => (succ p)~1
    | p~0, q~1 => (add_carry p q)~0
    | p~0, q~0 => (add p q)~1
    | p~0, 1 => (succ p)~0
    | 1, q~1 => (succ q)~1
    | 1, q~0 => (succ q)~0
    | 1, 1 => 1~1
  end.

Infix "+" := add : positive_scope.

(** ** Operation [x -> 2*x-1] *)

Fixpoint pred_double x :=
  match x with
    | p~1 => p~0~1
    | p~0 => (pred_double p)~1
    | 1 => 1
  end.

(** ** Predecessor *)

Definition pred x :=
  match x with
    | p~1 => p~0
    | p~0 => pred_double p
    | 1 => 1
  end.

(** ** The predecessor of a positive number can be seen as a [N] *)

Definition pred_N x :=
  match x with
    | p~1 => Npos (p~0)
    | p~0 => Npos (pred_double p)
    | 1 => N0
  end.

(** ** An auxiliary type for subtraction *)

Inductive mask : Set :=
| IsNul : mask
| IsPos : positive -> mask
| IsNeg : mask.

(** ** Operation [x -> 2*x+1] *)

Definition succ_double_mask (x:mask) : mask :=
  match x with
    | IsNul => IsPos 1
    | IsNeg => IsNeg
    | IsPos p => IsPos p~1
  end.

(** ** Operation [x -> 2*x] *)

Definition double_mask (x:mask) : mask :=
  match x with
    | IsNul => IsNul
    | IsNeg => IsNeg
    | IsPos p => IsPos p~0
  end.

(** ** Operation [x -> 2*x-2] *)

Definition double_pred_mask x : mask :=
  match x with
    | p~1 => IsPos p~0~0
    | p~0 => IsPos (pred_double p)~0
    | 1 => IsNul
  end.

(** ** Predecessor with mask *)

Definition pred_mask (p : mask) : mask :=
  match p with
    | IsPos 1 => IsNul
    | IsPos q => IsPos (pred q)
    | IsNul => IsNeg
    | IsNeg => IsNeg
  end.

(** ** Subtraction, result as a mask *)

Fixpoint sub_mask (x y:positive) {struct y} : mask :=
  match x, y with
    | p~1, q~1 => double_mask (sub_mask p q)
    | p~1, q~0 => succ_double_mask (sub_mask p q)
    | p~1, 1 => IsPos p~0
    | p~0, q~1 => succ_double_mask (sub_mask_carry p q)
    | p~0, q~0 => double_mask (sub_mask p q)
    | p~0, 1 => IsPos (pred_double p)
    | 1, 1 => IsNul
    | 1, _ => IsNeg
  end

with sub_mask_carry (x y:positive) {struct y} : mask :=
  match x, y with
    | p~1, q~1 => succ_double_mask (sub_mask_carry p q)
    | p~1, q~0 => double_mask (sub_mask p q)
    | p~1, 1 => IsPos (pred_double p)
    | p~0, q~1 => double_mask (sub_mask_carry p q)
    | p~0, q~0 => succ_double_mask (sub_mask_carry p q)
    | p~0, 1 => double_pred_mask p
    | 1, _ => IsNeg
  end.

(** ** Subtraction, result as a positive, returning 1 if [x<=y] *)

Definition sub x y :=
  match sub_mask x y with
    | IsPos z => z
    | _ => 1
  end.

Infix "-" := sub : positive_scope.

(** ** Multiplication *)

Fixpoint mul x y :=
  match x with
    | p~1 => y + (mul p y)~0
    | p~0 => (mul p y)~0
    | 1 => y
  end.

Infix "*" := mul : positive_scope.

(** ** Iteration over a positive number *)

Definition iter {A} (f:A -> A) : A -> positive -> A :=
  fix iter_fix x n := match n with
    | xH => f x
    | xO n' => iter_fix (iter_fix x n') n'
    | xI n' => f (iter_fix (iter_fix x n') n')
  end.

(** ** Power *)

Definition pow (x:positive) := iter (mul x) 1.

Infix "^" := pow : positive_scope.

(** ** Square *)

Fixpoint square p :=
  match p with
    | p~1 => (square p + p)~0~1
    | p~0 => (square p)~0~0
    | 1 => 1
  end.

(** ** Division by 2 rounded below but for 1 *)

Definition div2 p :=
  match p with
    | 1 => 1
    | p~0 => p
    | p~1 => p
  end.

(** Division by 2 rounded up *)

Definition div2_up p :=
 match p with
   | 1 => 1
   | p~0 => p
   | p~1 => succ p
 end.

(** ** Number of digits in a positive number *)

Fixpoint size_nat p : nat :=
  match p with
    | 1 => S O
    | p~1 => S (size_nat p)
    | p~0 => S (size_nat p)
  end.

(** Same, with positive output *)

Fixpoint size p :=
  match p with
    | 1 => 1
    | p~1 => succ (size p)
    | p~0 => succ (size p)
  end.

(** ** Comparison on binary positive numbers *)

Fixpoint compare_cont (r:comparison) (x y:positive) {struct y} : comparison :=
  match x, y with
    | p~1, q~1 => compare_cont r p q
    | p~1, q~0 => compare_cont Gt p q
    | p~1, 1 => Gt
    | p~0, q~1 => compare_cont Lt p q
    | p~0, q~0 => compare_cont r p q
    | p~0, 1 => Gt
    | 1, q~1 => Lt
    | 1, q~0 => Lt
    | 1, 1 => r
  end.

Definition compare := compare_cont Eq.

Infix "?=" := compare (at level 70, no associativity) : positive_scope.

Definition min p p' :=
 match p ?= p' with
 | Lt | Eq => p
 | Gt => p'
 end.

Definition max p p' :=
 match p ?= p' with
 | Lt | Eq => p'
 | Gt => p
 end.

(** ** Boolean equality and comparisons *)

Fixpoint eqb p q {struct q} :=
  match p, q with
    | p~1, q~1 => eqb p q
    | p~0, q~0 => eqb p q
    | 1, 1 => true
    | _, _ => false
  end.

Definition leb x y :=
 match x ?= y with Gt => false | _ => true end.

Definition ltb x y :=
 match x ?= y with Lt => true | _ => false end.

Infix "=?" := eqb (at level 70, no associativity) : positive_scope.
Infix "<=?" := leb (at level 70, no associativity) : positive_scope.
Infix "<?" := ltb (at level 70, no associativity) : positive_scope.

(** ** A Square Root function for positive numbers *)

(** We procede by blocks of two digits : if p is written qbb'
    then sqrt(p) will be sqrt(q)~0 or sqrt(q)~1.
    For deciding easily in which case we are, we store the remainder
    (as a mask, since it can be null).
    Instead of copy-pasting the following code four times, we
    factorize as an auxiliary function, with f and g being either
    xO or xI depending of the initial digits.
    NB: (sub_mask (g (f 1)) 4) is a hack, morally it's g (f 0).
*)

Definition sqrtrem_step (f g:positive->positive) p :=
 match p with
  | (s, IsPos r) =>
    let s' := s~0~1 in
    let r' := g (f r) in
    if s' <=? r' then (s~1, sub_mask r' s')
    else (s~0, IsPos r')
  | (s,_)  => (s~0, sub_mask (g (f 1)) 4)
 end.

Fixpoint sqrtrem p : positive * mask :=
 match p with
  | 1 => (1,IsNul)
  | 2 => (1,IsPos 1)
  | 3 => (1,IsPos 2)
  | p~0~0 => sqrtrem_step xO xO (sqrtrem p)
  | p~0~1 => sqrtrem_step xO xI (sqrtrem p)
  | p~1~0 => sqrtrem_step xI xO (sqrtrem p)
  | p~1~1 => sqrtrem_step xI xI (sqrtrem p)
 end.

Definition sqrt p := fst (sqrtrem p).


(** ** Greatest Common Divisor *)

Definition divide p q := exists r, q = r*p.
Notation "( p | q )" := (divide p q) (at level 0) : positive_scope.

(** Instead of the Euclid algorithm, we use here the Stein binary
   algorithm, which is faster for this representation. This algorithm
   is almost structural, but in the last cases we do some recursive
   calls on subtraction, hence the need for a counter.
*)

Fixpoint gcdn (n : nat) (a b : positive) : positive :=
  match n with
    | O => 1
    | S n =>
      match a,b with
	| 1, _ => 1
	| _, 1 => 1
	| a~0, b~0 => (gcdn n a b)~0
	| _  , b~0 => gcdn n a b
	| a~0, _   => gcdn n a b
	| a'~1, b'~1 =>
          match a' ?= b' with
	    | Eq => a
	    | Lt => gcdn n (b'-a') a
	    | Gt => gcdn n (a'-b') b
          end
      end
  end.

(** We'll show later that we need at most (log2(a.b)) loops *)

Definition gcd (a b : positive) := gcdn (size_nat a + size_nat b)%nat a b.

(** Generalized Gcd, also computing the division of a and b by the gcd *)
Set Printing Universes.
Fixpoint ggcdn (n : nat) (a b : positive) : (positive*(positive*positive)) :=
  match n with
    | O => (1,(a,b))
    | S n =>
      match a,b with
	| 1, _ => (1,(1,b))
	| _, 1 => (1,(a,1))
	| a~0, b~0 =>
           let (g,p) := ggcdn n a b in
           (g~0,p)
	| _, b~0 =>
           let '(g,(aa,bb)) := ggcdn n a b in
           (g,(aa, bb~0))
	| a~0, _ =>
           let '(g,(aa,bb)) := ggcdn n a b in
           (g,(aa~0, bb))
	| a'~1, b'~1 =>
           match a' ?= b' with
	     | Eq => (a,(1,1))
	     | Lt =>
	        let '(g,(ba,aa)) := ggcdn n (b'-a') a in
	        (g,(aa, aa + ba~0))
	     | Gt =>
		let '(g,(ab,bb)) := ggcdn n (a'-b') b in
		(g,(bb + ab~0, bb))
	   end
      end
  end.

Definition ggcd (a b: positive) := ggcdn (size_nat a + size_nat b)%nat a b.

(** Local copies of the not-yet-available [N.double] and [N.succ_double] *)

Definition Nsucc_double x :=
  match x with
  | N0 => Npos 1
  | Npos p => Npos p~1
  end.

Definition Ndouble n :=
  match n with
  | N0 => N0
  | Npos p => Npos p~0
  end.

(** Operation over bits. *)

(** Logical [or] *)

Fixpoint lor (p q : positive) : positive :=
  match p, q with
    | 1, q~0 => q~1
    | 1, _ => q
    | p~0, 1 => p~1
    | _, 1 => p
    | p~0, q~0 => (lor p q)~0
    | p~0, q~1 => (lor p q)~1
    | p~1, q~0 => (lor p q)~1
    | p~1, q~1 => (lor p q)~1
  end.

(** Logical [and] *)

Fixpoint land (p q : positive) : N :=
  match p, q with
    | 1, q~0 => N0
    | 1, _ => Npos 1
    | p~0, 1 => N0
    | _, 1 => Npos 1
    | p~0, q~0 => Ndouble (land p q)
    | p~0, q~1 => Ndouble (land p q)
    | p~1, q~0 => Ndouble (land p q)
    | p~1, q~1 => Nsucc_double (land p q)
  end.

(** Logical [diff] *)

Fixpoint ldiff (p q:positive) : N :=
  match p, q with
    | 1, q~0 => Npos 1
    | 1, _ => N0
    | _~0, 1 => Npos p
    | p~1, 1 => Npos (p~0)
    | p~0, q~0 => Ndouble (ldiff p q)
    | p~0, q~1 => Ndouble (ldiff p q)
    | p~1, q~1 => Ndouble (ldiff p q)
    | p~1, q~0 => Nsucc_double (ldiff p q)
  end.

(** [xor] *)

Fixpoint lxor (p q:positive) : N :=
  match p, q with
    | 1, 1 => N0
    | 1, q~0 => Npos (q~1)
    | 1, q~1 => Npos (q~0)
    | p~0, 1 => Npos (p~1)
    | p~0, q~0 => Ndouble (lxor p q)
    | p~0, q~1 => Nsucc_double (lxor p q)
    | p~1, 1 => Npos (p~0)
    | p~1, q~0 => Nsucc_double (lxor p q)
    | p~1, q~1 => Ndouble (lxor p q)
  end.

(** Shifts. NB: right shift of 1 stays at 1. *)

Definition shiftl_nat (p:positive) := nat_rect _ p (fun _ => xO).
Definition shiftr_nat (p:positive) := nat_rect _ p (fun _ => div2).

Definition shiftl (p:positive)(n:N) :=
  match n with
    | N0 => p
    | Npos n => iter xO p n
  end.

Definition shiftr (p:positive)(n:N) :=
  match n with
    | N0 => p
    | Npos n => iter div2 p n
  end.

(** Checking whether a particular bit is set or not *)

Fixpoint testbit_nat (p:positive) : nat -> bool :=
  match p with
    | 1 => fun n => match n with
                      | O => true
                      | S _ => false
                    end
    | p~0 => fun n => match n with
                        | O => false
                        | S n' => testbit_nat p n'
                      end
    | p~1 => fun n => match n with
                        | O => true
                        | S n' => testbit_nat p n'
                      end
  end.

(** Same, but with index in N *)

Fixpoint testbit (p:positive)(n:N) :=
  match p, n with
    | p~0, N0 => false
    | _, N0 => true
    | 1, _ => false
    | p~0, Npos n => testbit p (pred_N n)
    | p~1, Npos n => testbit p (pred_N n)
  end.

(** ** From binary positive numbers to Peano natural numbers *)

Definition iter_op {A}(op:A->A->A) :=
  fix iter (p:positive)(a:A) : A :=
  match p with
    | 1 => a
    | p~0 => iter p (op a a)
    | p~1 => op a (iter p (op a a))
  end.

Definition to_nat (x:positive) : nat := iter_op plus x (S O).
Arguments to_nat x: simpl never.
(** ** From Peano natural numbers to binary positive numbers *)

(** A version preserving positive numbers, and sending 0 to 1. *)

Fixpoint of_nat (n:nat) : positive :=
 match n with
   | O => 1
   | S O => 1
   | S x => succ (of_nat x)
 end.

(* Another version that converts [n] into [n+1] *)

Fixpoint of_succ_nat (n:nat) : positive :=
  match n with
    | O => 1
    | S x => succ (of_succ_nat x)
  end.

(** ** Conversion with a decimal representation for printing/parsing *)

Local Notation ten := 1~0~1~0.

Fixpoint of_uint_acc (d:Decimal.uint)(acc:positive) :=
  match d with
  | Decimal.Nil => acc
  | Decimal.D0 l => of_uint_acc l (mul ten acc)
  | Decimal.D1 l => of_uint_acc l (add 1 (mul ten acc))
  | Decimal.D2 l => of_uint_acc l (add 1~0 (mul ten acc))
  | Decimal.D3 l => of_uint_acc l (add 1~1 (mul ten acc))
  | Decimal.D4 l => of_uint_acc l (add 1~0~0 (mul ten acc))
  | Decimal.D5 l => of_uint_acc l (add 1~0~1 (mul ten acc))
  | Decimal.D6 l => of_uint_acc l (add 1~1~0 (mul ten acc))
  | Decimal.D7 l => of_uint_acc l (add 1~1~1 (mul ten acc))
  | Decimal.D8 l => of_uint_acc l (add 1~0~0~0 (mul ten acc))
  | Decimal.D9 l => of_uint_acc l (add 1~0~0~1 (mul ten acc))
  end.

Fixpoint of_uint (d:Decimal.uint) : N :=
  match d with
  | Decimal.Nil => N0
  | Decimal.D0 l => of_uint l
  | Decimal.D1 l => Npos (of_uint_acc l 1)
  | Decimal.D2 l => Npos (of_uint_acc l 1~0)
  | Decimal.D3 l => Npos (of_uint_acc l 1~1)
  | Decimal.D4 l => Npos (of_uint_acc l 1~0~0)
  | Decimal.D5 l => Npos (of_uint_acc l 1~0~1)
  | Decimal.D6 l => Npos (of_uint_acc l 1~1~0)
  | Decimal.D7 l => Npos (of_uint_acc l 1~1~1)
  | Decimal.D8 l => Npos (of_uint_acc l 1~0~0~0)
  | Decimal.D9 l => Npos (of_uint_acc l 1~0~0~1)
  end.

Definition of_int (d:Decimal.int) : option positive :=
  match d with
  | Decimal.Pos d =>
    match of_uint d with
    | N0 => None
    | Npos p => Some p
    end
  | Decimal.Neg _ => None
  end.

Fixpoint to_little_uint p :=
  match p with
  | 1 => Decimal.D1 Decimal.Nil
  | p~1 => Decimal.Little.succ_double (to_little_uint p)
  | p~0 => Decimal.Little.double (to_little_uint p)
  end.

Definition to_uint p := Decimal.rev (to_little_uint p).

Definition to_int n := Decimal.Pos (to_uint n).

End Pos.