summaryrefslogtreecommitdiff
path: root/theories/Numbers/Rational/BigQ/BigQ.v
blob: 82190f9429d33f534c93c67f6267657a8a00a581 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * BigQ: an efficient implementation of rational numbers *)

(** Initial authors: Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)

Require Export BigZ.
Require Import Field Qfield QSig QMake Orders GenericMinMax.

(** We choose for BigQ an implemention with
    multiple representation of 0: 0, 1/0, 2/0 etc.
    See [QMake.v] *)

(** First, we provide translations functions between [BigN] and [BigZ] *)

Module BigN_BigZ <: NType_ZType BigN.BigN BigZ.
 Definition Z_of_N := BigZ.Pos.
 Lemma spec_Z_of_N : forall n, BigZ.to_Z (Z_of_N n) = BigN.to_Z n.
 Proof.
 reflexivity.
 Qed.
 Definition Zabs_N := BigZ.to_N.
 Lemma spec_Zabs_N : forall z, BigN.to_Z (Zabs_N z) = Zabs (BigZ.to_Z z).
 Proof.
 unfold Zabs_N; intros.
 rewrite BigZ.spec_to_Z, Zmult_comm; apply Zsgn_Zabs.
 Qed.
End BigN_BigZ.

(** This allows to build [BigQ] out of [BigN] and [BigQ] via [QMake] *)

Module BigQ <: QType <: OrderedTypeFull <: TotalOrder :=
 QMake.Make BigN BigZ BigN_BigZ <+ !QProperties <+ HasEqBool2Dec
 <+ !MinMaxLogicalProperties <+ !MinMaxDecProperties.

(** Notations about [BigQ] *)

Notation bigQ := BigQ.t.

Delimit Scope bigQ_scope with bigQ.
Bind Scope bigQ_scope with bigQ.
Bind Scope bigQ_scope with BigQ.t.
Bind Scope bigQ_scope with BigQ.t_.
(* Bind Scope has no retroactive effect, let's declare scopes by hand. *)
Arguments Scope BigQ.Qz [bigZ_scope].
Arguments Scope BigQ.Qq [bigZ_scope bigN_scope].
Arguments Scope BigQ.to_Q [bigQ_scope].
Arguments Scope BigQ.red [bigQ_scope].
Arguments Scope BigQ.opp [bigQ_scope].
Arguments Scope BigQ.inv [bigQ_scope].
Arguments Scope BigQ.square [bigQ_scope].
Arguments Scope BigQ.add [bigQ_scope bigQ_scope].
Arguments Scope BigQ.sub [bigQ_scope bigQ_scope].
Arguments Scope BigQ.mul [bigQ_scope bigQ_scope].
Arguments Scope BigQ.div [bigQ_scope bigQ_scope].
Arguments Scope BigQ.eq [bigQ_scope bigQ_scope].
Arguments Scope BigQ.lt [bigQ_scope bigQ_scope].
Arguments Scope BigQ.le [bigQ_scope bigQ_scope].
Arguments Scope BigQ.eq [bigQ_scope bigQ_scope].
Arguments Scope BigQ.compare [bigQ_scope bigQ_scope].
Arguments Scope BigQ.min [bigQ_scope bigQ_scope].
Arguments Scope BigQ.max [bigQ_scope bigQ_scope].
Arguments Scope BigQ.eq_bool [bigQ_scope bigQ_scope].
Arguments Scope BigQ.power_pos [bigQ_scope positive_scope].
Arguments Scope BigQ.power [bigQ_scope Z_scope].
Arguments Scope BigQ.inv_norm [bigQ_scope].
Arguments Scope BigQ.add_norm [bigQ_scope bigQ_scope].
Arguments Scope BigQ.sub_norm [bigQ_scope bigQ_scope].
Arguments Scope BigQ.mul_norm [bigQ_scope bigQ_scope].
Arguments Scope BigQ.div_norm [bigQ_scope bigQ_scope].
Arguments Scope BigQ.power_norm [bigQ_scope bigQ_scope].

(** As in QArith, we use [#] to denote fractions *)
Notation "p # q" := (BigQ.Qq p q) (at level 55, no associativity) : bigQ_scope.
Local Notation "0" := BigQ.zero : bigQ_scope.
Local Notation "1" := BigQ.one : bigQ_scope.
Infix "+" := BigQ.add : bigQ_scope.
Infix "-" := BigQ.sub : bigQ_scope.
Notation "- x" := (BigQ.opp x) : bigQ_scope.
Infix "*" := BigQ.mul : bigQ_scope.
Infix "/" := BigQ.div : bigQ_scope.
Infix "^" := BigQ.power : bigQ_scope.
Infix "?=" := BigQ.compare : bigQ_scope.
Infix "==" := BigQ.eq : bigQ_scope.
Notation "x != y" := (~x==y)%bigQ (at level 70, no associativity) : bigQ_scope.
Infix "<" := BigQ.lt : bigQ_scope.
Infix "<=" := BigQ.le : bigQ_scope.
Notation "x > y" := (BigQ.lt y x)(only parsing) : bigQ_scope.
Notation "x >= y" := (BigQ.le y x)(only parsing) : bigQ_scope.
Notation "x < y < z" := (x<y /\ y<z)%bigQ : bigQ_scope.
Notation "x < y <= z" := (x<y /\ y<=z)%bigQ : bigQ_scope.
Notation "x <= y < z" := (x<=y /\ y<z)%bigQ : bigQ_scope.
Notation "x <= y <= z" := (x<=y /\ y<=z)%bigQ : bigQ_scope.
Notation "[ q ]" := (BigQ.to_Q q) : bigQ_scope.

Local Open Scope bigQ_scope.

(** [BigQ] is a field *)

Lemma BigQfieldth :
 field_theory 0 1 BigQ.add BigQ.mul BigQ.sub BigQ.opp
  BigQ.div BigQ.inv BigQ.eq.
Proof.
constructor.
constructor.
exact BigQ.add_0_l. exact BigQ.add_comm. exact BigQ.add_assoc.
exact BigQ.mul_1_l. exact BigQ.mul_comm. exact BigQ.mul_assoc.
exact BigQ.mul_add_distr_r. exact BigQ.sub_add_opp.
exact BigQ.add_opp_diag_r. exact BigQ.neq_1_0.
exact BigQ.div_mul_inv. exact BigQ.mul_inv_diag_l.
Qed.

Lemma BigQpowerth :
 power_theory 1 BigQ.mul BigQ.eq Z_of_N BigQ.power.
Proof.
constructor. intros. BigQ.qify.
replace ([r] ^ Z_of_N n)%Q with (pow_N 1 Qmult [r] n)%Q by (now destruct n).
destruct n. reflexivity.
induction p; simpl; auto; rewrite ?BigQ.spec_mul, ?IHp; reflexivity.
Qed.

Ltac isBigQcst t :=
 match t with
 | BigQ.Qz ?t => isBigZcst t
 | BigQ.Qq ?n ?d => match isBigZcst n with
             | true => isBigNcst d
             | false => constr:false
             end
 | BigQ.zero => constr:true
 | BigQ.one => constr:true
 | BigQ.minus_one => constr:true
 | _ => constr:false
 end.

Ltac BigQcst t :=
 match isBigQcst t with
 | true => constr:t
 | false => constr:NotConstant
 end.

Add Field BigQfield : BigQfieldth
 (decidable BigQ.eqb_correct,
  completeness BigQ.eqb_complete,
  constants [BigQcst],
  power_tac BigQpowerth [Qpow_tac]).

Section TestField.

Let ex1 : forall x y z, (x+y)*z ==  (x*z)+(y*z).
  intros.
  ring.
Qed.

Let ex8 : forall x, x ^ 2 == x*x.
  intro.
  ring.
Qed.

Let ex10 : forall x y, y!=0 -> (x/y)*y == x.
intros.
field.
auto.
Qed.

End TestField.

(** [BigQ] can also benefit from an "order" tactic *)

Module BigQ_Order := !OrdersTac.MakeOrderTac BigQ.
Ltac bigQ_order := BigQ_Order.order.

Section TestOrder.
Let test : forall x y : bigQ, x<=y -> y<=x -> x==y.
Proof. bigQ_order. Qed.
End TestOrder.

(** We can also reason by switching to QArith thanks to tactic
    BigQ.qify. *)

Section TestQify.
Let test : forall x : bigQ, 0+x == 1*x.
Proof. intro x. BigQ.qify. ring. Qed.
End TestQify.