summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
blob: 355da4cc62e07194362d3f76bf6f80915cb35f5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import ZArith OrdersFacts Nnat NAxioms NSig.

(** * The interface [NSig.NType] implies the interface [NAxiomsSig] *)

Module NTypeIsNAxioms (Import NN : NType').

Hint Rewrite
 spec_0 spec_1 spec_2 spec_succ spec_add spec_mul spec_pred spec_sub
 spec_div spec_modulo spec_gcd spec_compare spec_eqb spec_ltb spec_leb
 spec_square spec_sqrt spec_log2 spec_max spec_min spec_pow_pos spec_pow_N
 spec_pow spec_even spec_odd spec_testbit spec_shiftl spec_shiftr
 spec_land spec_lor spec_ldiff spec_lxor spec_div2 spec_of_N
 : nsimpl.
Ltac nsimpl := autorewrite with nsimpl.
Ltac ncongruence := unfold eq, to_N; repeat red; intros; nsimpl; congruence.
Ltac zify := unfold eq, lt, le, to_N in *; nsimpl.
Ltac omega_pos n := generalize (spec_pos n); omega with *.

Local Obligation Tactic := ncongruence.

Instance eq_equiv : Equivalence eq.
Proof. unfold eq. firstorder. Qed.

Program Instance succ_wd : Proper (eq==>eq) succ.
Program Instance pred_wd : Proper (eq==>eq) pred.
Program Instance add_wd : Proper (eq==>eq==>eq) add.
Program Instance sub_wd : Proper (eq==>eq==>eq) sub.
Program Instance mul_wd : Proper (eq==>eq==>eq) mul.

Theorem pred_succ : forall n, pred (succ n) == n.
Proof.
intros. zify. omega_pos n.
Qed.

Theorem one_succ : 1 == succ 0.
Proof.
now zify.
Qed.

Theorem two_succ : 2 == succ 1.
Proof.
now zify.
Qed.

Definition N_of_Z z := of_N (Z.to_N z).

Lemma spec_N_of_Z z : (0<=z)%Z -> [N_of_Z z] = z.
Proof.
 unfold N_of_Z. zify. apply Z2N.id.
Qed.

Section Induction.

Variable A : NN.t -> Prop.
Hypothesis A_wd : Proper (eq==>iff) A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (succ n).

Let B (z : Z) := A (N_of_Z z).

Lemma B0 : B 0.
Proof.
unfold B, N_of_Z; simpl.
rewrite <- (A_wd 0); auto.
red; rewrite spec_0, spec_of_N; auto.
Qed.

Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1).
Proof.
intros z H1 H2.
unfold B in *. apply -> AS in H2.
setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto.
unfold eq. rewrite spec_succ, 2 spec_N_of_Z; auto with zarith.
Qed.

Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z.
Proof.
exact (natlike_ind B B0 BS).
Qed.

Theorem bi_induction : forall n, A n.
Proof.
intro n. setoid_replace n with (N_of_Z (to_Z n)).
apply B_holds. apply spec_pos.
red. now rewrite spec_N_of_Z by apply spec_pos.
Qed.

End Induction.

Theorem add_0_l : forall n, 0 + n == n.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m).
Proof.
intros. zify. auto with zarith.
Qed.

Theorem sub_0_r : forall n, n - 0 == n.
Proof.
intros. zify. omega_pos n.
Qed.

Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m).
Proof.
intros. zify. omega with *.
Qed.

Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m.
Proof.
intros. zify. ring.
Qed.

(** Order *)

Lemma eqb_eq x y : eqb x y = true <-> x == y.
Proof.
 zify. apply Z.eqb_eq.
Qed.

Lemma leb_le x y : leb x y = true <-> x <= y.
Proof.
 zify. apply Z.leb_le.
Qed.

Lemma ltb_lt x y : ltb x y = true <-> x < y.
Proof.
 zify. apply Z.ltb_lt.
Qed.

Lemma compare_eq_iff n m : compare n m = Eq <-> n == m.
Proof.
 intros. zify. apply Z.compare_eq_iff.
Qed.

Lemma compare_lt_iff n m : compare n m = Lt <-> n < m.
Proof.
 intros. zify. reflexivity.
Qed.

Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m.
Proof.
 intros. zify. reflexivity.
Qed.

Lemma compare_antisym n m : compare m n = CompOpp (compare n m).
Proof.
 intros. zify. apply Z.compare_antisym.
Qed.

Include BoolOrderFacts NN NN NN [no inline].

Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare.
Proof.
intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.

Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb.
Proof.
intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.

Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb.
Proof.
intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.

Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb.
Proof.
intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy.
Qed.

Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
Proof.
intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
Qed.

Theorem lt_succ_r : forall n m, n < succ m <-> n <= m.
Proof.
intros. zify. omega.
Qed.

Theorem min_l : forall n m, n <= m -> min n m == n.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem min_r : forall n m, m <= n -> min n m == m.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem max_l : forall n m, m <= n -> max n m == n.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem max_r : forall n m, n <= m -> max n m == m.
Proof.
intros n m. zify. omega with *.
Qed.

(** Properties specific to natural numbers, not integers. *)

Theorem pred_0 : pred 0 == 0.
Proof.
zify. auto.
Qed.

(** Power *)

Program Instance pow_wd : Proper (eq==>eq==>eq) pow.

Lemma pow_0_r : forall a, a^0 == 1.
Proof.
 intros. now zify.
Qed.

Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b.
Proof.
 intros a b. zify. intros. now Z.nzsimpl.
Qed.

Lemma pow_neg_r : forall a b, b<0 -> a^b == 0.
Proof.
 intros a b. zify. intro Hb. exfalso. omega_pos b.
Qed.

Lemma pow_pow_N : forall a b, a^b == pow_N a (to_N b).
Proof.
 intros. zify. f_equal.
 now rewrite Z2N.id by apply spec_pos.
Qed.

Lemma pow_N_pow : forall a b, pow_N a b == a^(of_N b).
Proof.
 intros. now zify.
Qed.

Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p).
Proof.
 intros. now zify.
Qed.

(** Square *)

Lemma square_spec n : square n == n * n.
Proof.
 now zify.
Qed.

(** Sqrt *)

Lemma sqrt_spec : forall n, 0<=n ->
 (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)).
Proof.
 intros n. zify. apply Z.sqrt_spec.
Qed.

Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0.
Proof.
 intros n. zify. intro H. exfalso. omega_pos n.
Qed.

(** Log2 *)

Lemma log2_spec : forall n, 0<n ->
 2^(log2 n) <= n /\ n < 2^(succ (log2 n)).
Proof.
 intros n. zify. change (Z.log2 [n]+1)%Z with (Z.succ (Z.log2 [n])).
 apply Z.log2_spec.
Qed.

Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0.
Proof.
 intros n. zify. apply Z.log2_nonpos.
Qed.

(** Even / Odd *)

Definition Even n := exists m, n == 2*m.
Definition Odd n := exists m, n == 2*m+1.

Lemma even_spec n : even n = true <-> Even n.
Proof.
 unfold Even. zify. rewrite Z.even_spec.
 split; intros (m,Hm).
 - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n.
 - exists [m]. revert Hm; now zify.
Qed.

Lemma odd_spec n : odd n = true <-> Odd n.
Proof.
 unfold Odd. zify. rewrite Z.odd_spec.
 split; intros (m,Hm).
 - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n.
 - exists [m]. revert Hm; now zify.
Qed.

(** Div / Mod *)

Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.

Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b).
Proof.
intros a b. zify. intros. apply Z.div_mod; auto.
Qed.

Theorem mod_bound_pos : forall a b, 0<=a -> 0<b ->
 0 <= modulo a b /\ modulo a b < b.
Proof.
intros a b. zify. apply Z.mod_bound_pos.
Qed.

(** Gcd *)

Definition divide n m := exists p, m == p*n.
Local Notation "( x | y )" := (divide x y) (at level 0).

Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m].
Proof.
 intros n m. split.
 - intros (p,H). exists [p]. revert H; now zify.
 - intros (z,H). exists (of_N (Z.abs_N z)). zify.
   rewrite N2Z.inj_abs_N.
   rewrite <- (Z.abs_eq [m]), <- (Z.abs_eq [n]) by apply spec_pos.
   now rewrite H, Z.abs_mul.
Qed.

Lemma gcd_divide_l : forall n m, (gcd n m | n).
Proof.
 intros n m. apply spec_divide. zify. apply Z.gcd_divide_l.
Qed.

Lemma gcd_divide_r : forall n m, (gcd n m | m).
Proof.
 intros n m. apply spec_divide. zify. apply Z.gcd_divide_r.
Qed.

Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m).
Proof.
 intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest.
Qed.

Lemma gcd_nonneg : forall n m, 0 <= gcd n m.
Proof.
 intros. zify. apply Z.gcd_nonneg.
Qed.

(** Bitwise operations *)

Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.

Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true.
Proof.
 intros. zify. apply Z.testbit_odd_0.
Qed.

Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false.
Proof.
 intros. zify. apply Z.testbit_even_0.
Qed.

Lemma testbit_odd_succ : forall a n, 0<=n ->
 testbit (2*a+1) (succ n) = testbit a n.
Proof.
 intros a n. zify. apply Z.testbit_odd_succ.
Qed.

Lemma testbit_even_succ : forall a n, 0<=n ->
 testbit (2*a) (succ n) = testbit a n.
Proof.
 intros a n. zify. apply Z.testbit_even_succ.
Qed.

Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false.
Proof.
 intros a n. zify. apply Z.testbit_neg_r.
Qed.

Lemma shiftr_spec : forall a n m, 0<=m ->
 testbit (shiftr a n) m = testbit a (m+n).
Proof.
 intros a n m. zify. apply Z.shiftr_spec.
Qed.

Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m ->
 testbit (shiftl a n) m = testbit a (m-n).
Proof.
 intros a n m. zify. intros Hn H. rewrite Z.max_r by auto with zarith.
 now apply Z.shiftl_spec_high.
Qed.

Lemma shiftl_spec_low : forall a n m, m<n ->
 testbit (shiftl a n) m = false.
Proof.
 intros a n m. zify. intros H. now apply Z.shiftl_spec_low.
Qed.

Lemma land_spec : forall a b n,
 testbit (land a b) n = testbit a n && testbit b n.
Proof.
 intros a n m. zify. now apply Z.land_spec.
Qed.

Lemma lor_spec : forall a b n,
 testbit (lor a b) n = testbit a n || testbit b n.
Proof.
 intros a n m. zify. now apply Z.lor_spec.
Qed.

Lemma ldiff_spec : forall a b n,
 testbit (ldiff a b) n = testbit a n && negb (testbit b n).
Proof.
 intros a n m. zify. now apply Z.ldiff_spec.
Qed.

Lemma lxor_spec : forall a b n,
 testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
Proof.
 intros a n m. zify. now apply Z.lxor_spec.
Qed.

Lemma div2_spec : forall a, div2 a == shiftr a 1.
Proof.
 intros a. zify. now apply Z.div2_spec.
Qed.

(** Recursion *)

Definition recursion (A : Type) (a : A) (f : NN.t -> A -> A) (n : NN.t) :=
  N.peano_rect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n).
Arguments recursion [A] a f n.

Instance recursion_wd (A : Type) (Aeq : relation A) :
 Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A).
Proof.
unfold eq.
intros a a' Eaa' f f' Eff' x x' Exx'.
unfold recursion.
unfold NN.to_N.
rewrite <- Exx'; clear x' Exx'.
induction (Z.to_N [x]) using N.peano_ind.
simpl; auto.
rewrite 2 N.peano_rect_succ. now apply Eff'.
Qed.

Theorem recursion_0 :
  forall (A : Type) (a : A) (f : NN.t -> A -> A), recursion a f 0 = a.
Proof.
intros A a f; unfold recursion, NN.to_N; rewrite NN.spec_0; simpl; auto.
Qed.

Theorem recursion_succ :
  forall (A : Type) (Aeq : relation A) (a : A) (f : NN.t -> A -> A),
    Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
      forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)).
Proof.
unfold eq, recursion; intros A Aeq a f EAaa f_wd n.
replace (to_N (succ n)) with (N.succ (to_N n)) by
 (zify; now rewrite <- Z2N.inj_succ by apply spec_pos).
rewrite N.peano_rect_succ.
apply f_wd; auto.
zify. now rewrite Z2N.id by apply spec_pos.
fold (recursion a f n). apply recursion_wd; auto. red; auto.
Qed.

End NTypeIsNAxioms.

Module NType_NAxioms (NN : NType)
 <: NAxiomsSig <: OrderFunctions NN <: HasMinMax NN
 := NN <+ NTypeIsNAxioms.