summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Peano/NPeano.v
blob: a510b3ae2dcc2a961e35e25e7a6e0137fe8a2899 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Import
 Bool Peano Peano_dec Compare_dec Plus Mult Minus Le Lt EqNat Div2 Wf_nat
 NAxioms NProperties.

(** Functions not already defined *)

Fixpoint leb n m :=
  match n, m with
    | O, _ => true
    | _, O => false
    | S n', S m' => leb n' m'
  end.

Definition ltb n m := leb (S n) m.

Infix "<=?" := leb (at level 70) : nat_scope.
Infix "<?" := ltb (at level 70) : nat_scope.

Lemma leb_le n m : (n <=? m) = true <-> n <= m.
Proof.
 revert m.
 induction n. split; auto with arith.
 destruct m; simpl. now split.
 rewrite IHn. split; auto with arith.
Qed.

Lemma ltb_lt n m : (n <? m) = true <-> n < m.
Proof.
 unfold ltb, lt. apply leb_le.
Qed.

Fixpoint pow n m :=
  match m with
    | O => 1
    | S m => n * (pow n m)
  end.

Infix "^" := pow : nat_scope.

Lemma pow_0_r : forall a, a^0 = 1.
Proof. reflexivity. Qed.

Lemma pow_succ_r : forall a b, 0<=b -> a^(S b) = a * a^b.
Proof. reflexivity. Qed.

Definition square n := n * n.

Lemma square_spec n : square n = n * n.
Proof. reflexivity. Qed.

Definition Even n := exists m, n = 2*m.
Definition Odd n := exists m, n = 2*m+1.

Fixpoint even n :=
  match n with
    | O => true
    | 1 => false
    | S (S n') => even n'
  end.

Definition odd n := negb (even n).

Lemma even_spec : forall n, even n = true <-> Even n.
Proof.
 fix 1.
  destruct n as [|[|n]]; simpl; try rewrite even_spec; split.
  now exists 0.
  trivial.
  discriminate.
  intros (m,H). destruct m. discriminate.
   simpl in H. rewrite <- plus_n_Sm in H. discriminate.
  intros (m,H). exists (S m). rewrite H. simpl. now rewrite plus_n_Sm.
  intros (m,H). destruct m. discriminate. exists m.
   simpl in H. rewrite <- plus_n_Sm in H. inversion H. reflexivity.
Qed.

Lemma odd_spec : forall n, odd n = true <-> Odd n.
Proof.
 unfold odd.
 fix 1.
  destruct n as [|[|n]]; simpl; try rewrite odd_spec; split.
  discriminate.
  intros (m,H). rewrite <- plus_n_Sm in H; discriminate.
  now exists 0.
  trivial.
  intros (m,H). exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m).
  intros (m,H). destruct m. discriminate. exists m.
   simpl in H. rewrite <- plus_n_Sm in H. inversion H. simpl.
   now rewrite <- !plus_n_Sm, <- !plus_n_O.
Qed.

Lemma Even_equiv : forall n, Even n <-> Even.even n.
Proof.
 split. intros (p,->). apply Even.even_mult_l. do 3 constructor.
 intros H. destruct (even_2n n H) as (p,->).
 exists p. unfold double. simpl. now rewrite <- plus_n_O.
Qed.

Lemma Odd_equiv : forall n, Odd n <-> Even.odd n.
Proof.
 split. intros (p,->). rewrite <- plus_n_Sm, <- plus_n_O.
 apply Even.odd_S. apply Even.even_mult_l. do 3 constructor.
 intros H. destruct (odd_S2n n H) as (p,->).
 exists p. unfold double. simpl. now rewrite <- plus_n_Sm, <- !plus_n_O.
Qed.

(* A linear, tail-recursive, division for nat.

   In [divmod], [y] is the predecessor of the actual divisor,
   and [u] is [y] minus the real remainder
*)

Fixpoint divmod x y q u :=
  match x with
    | 0 => (q,u)
    | S x' => match u with
                | 0 => divmod x' y (S q) y
                | S u' => divmod x' y q u'
              end
  end.

Definition div x y :=
  match y with
    | 0 => y
    | S y' => fst (divmod x y' 0 y')
  end.

Definition modulo x y :=
  match y with
    | 0 => y
    | S y' => y' - snd (divmod x y' 0 y')
  end.

Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.

Lemma divmod_spec : forall x y q u, u <= y ->
 let (q',u') := divmod x y q u in
 x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y.
Proof.
 induction x. simpl. intuition.
 intros y q u H. destruct u; simpl divmod.
 generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u').
 intros (EQ,LE); split; trivial.
 rewrite <- EQ, <- minus_n_O, minus_diag, <- plus_n_O.
 now rewrite !plus_Sn_m, plus_n_Sm, <- plus_assoc, mult_n_Sm.
 generalize (IHx y q u (le_Sn_le _ _ H)). destruct divmod as (q',u').
 intros (EQ,LE); split; trivial.
 rewrite <- EQ.
 rewrite !plus_Sn_m, plus_n_Sm. f_equal. now apply minus_Sn_m.
Qed.

Lemma div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
Proof.
 intros x y Hy.
 destruct y; [ now elim Hy | clear Hy ].
 unfold div, modulo.
 generalize (divmod_spec x y 0 y (le_n y)).
 destruct divmod as (q,u).
 intros (U,V).
 simpl in *.
 now rewrite <- mult_n_O, minus_diag, <- !plus_n_O in U.
Qed.

Lemma mod_bound_pos : forall x y, 0<=x -> 0<y -> 0 <= x mod y < y.
Proof.
 intros x y Hx Hy. split. auto with arith.
 destruct y; [ now elim Hy | clear Hy ].
 unfold modulo.
 apply le_n_S, le_minus.
Qed.

(** Square root *)

(** The following square root function is linear (and tail-recursive).
  With Peano representation, we can't do better. For faster algorithm,
  see Psqrt/Zsqrt/Nsqrt...

  We search the square root of n = k + p^2 + (q - r)
  with q = 2p and 0<=r<=q. We start with p=q=r=0, hence
  looking for the square root of n = k. Then we progressively
  decrease k and r. When k = S k' and r=0, it means we can use (S p)
  as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2.
  When k reaches 0, we have found the biggest p^2 square contained
  in n, hence the square root of n is p.
*)

Fixpoint sqrt_iter k p q r :=
  match k with
    | O => p
    | S k' => match r with
                | O => sqrt_iter k' (S p) (S (S q)) (S (S q))
                | S r' => sqrt_iter k' p q r'
              end
  end.

Definition sqrt n := sqrt_iter n 0 0 0.

Lemma sqrt_iter_spec : forall k p q r,
 q = p+p -> r<=q ->
 let s := sqrt_iter k p q r in
 s*s <= k + p*p + (q - r) < (S s)*(S s).
Proof.
 induction k.
 (* k = 0 *)
 simpl; intros p q r Hq Hr.
 split.
 apply le_plus_l.
 apply le_lt_n_Sm.
 rewrite <- mult_n_Sm.
 rewrite plus_assoc, (plus_comm p), <- plus_assoc.
 apply plus_le_compat; trivial.
 rewrite <- Hq. apply le_minus.
 (* k = S k' *)
 destruct r.
 (* r = 0 *)
 intros Hq _.
 replace (S k + p*p + (q-0)) with (k + (S p)*(S p) + (S (S q) - S (S q))).
 apply IHk.
 simpl. rewrite <- plus_n_Sm. congruence.
 auto with arith.
 rewrite minus_diag, <- minus_n_O, <- plus_n_O. simpl.
 rewrite <- plus_n_Sm; f_equal. rewrite <- plus_assoc; f_equal.
 rewrite <- mult_n_Sm, (plus_comm p), <- plus_assoc. congruence.
 (* r = S r' *)
 intros Hq Hr.
 replace (S k + p*p + (q-S r)) with (k + p*p + (q - r)).
 apply IHk; auto with arith.
 simpl. rewrite plus_n_Sm. f_equal. rewrite minus_Sn_m; auto.
Qed.

Lemma sqrt_spec : forall n,
 (sqrt n)*(sqrt n) <= n < S (sqrt n) * S (sqrt n).
Proof.
 intros.
 set (s:=sqrt n).
 replace n with (n + 0*0 + (0-0)).
 apply sqrt_iter_spec; auto.
 simpl. now rewrite <- 2 plus_n_O.
Qed.

(** A linear tail-recursive base-2 logarithm

  In [log2_iter], we maintain the logarithm [p] of the counter [q],
  while [r] is the distance between [q] and the next power of 2,
  more precisely [q + S r = 2^(S p)] and [r<2^p]. At each
  recursive call, [q] goes up while [r] goes down. When [r]
  is 0, we know that [q] has almost reached a power of 2,
  and we increase [p] at the next call, while resetting [r]
  to [q].

  Graphically (numbers are [q], stars are [r]) :

<<
                    10
                  9
                8
              7   *
            6       *
          5           ...
        4
      3   *
    2       *
  1   *       *
0   *   *       *
>>

  We stop when [k], the global downward counter reaches 0.
  At that moment, [q] is the number we're considering (since
  [k+q] is invariant), and [p] its logarithm.
*)

Fixpoint log2_iter k p q r :=
  match k with
    | O => p
    | S k' => match r with
                | O => log2_iter k' (S p) (S q) q
                | S r' => log2_iter k' p (S q) r'
              end
  end.

Definition log2 n := log2_iter (pred n) 0 1 0.

Lemma log2_iter_spec : forall k p q r,
 2^(S p) = q + S r -> r < 2^p ->
 let s := log2_iter k p q r in
 2^s <= k + q < 2^(S s).
Proof.
 induction k.
 (* k = 0 *)
 intros p q r EQ LT. simpl log2_iter. cbv zeta.
 split.
 rewrite plus_O_n.
 apply plus_le_reg_l with (2^p).
 simpl pow in EQ. rewrite <- plus_n_O in EQ. rewrite EQ.
 rewrite plus_comm. apply plus_le_compat_r. now apply lt_le_S.
 rewrite EQ, plus_comm. apply plus_lt_compat_l. apply lt_0_Sn.
 (* k = S k' *)
 intros p q r EQ LT. destruct r.
 (* r = 0 *)
 rewrite <- plus_n_Sm, <- plus_n_O in EQ.
 rewrite plus_Sn_m, plus_n_Sm. apply IHk.
 rewrite <- EQ. remember (S p) as p'; simpl. now rewrite <- plus_n_O.
 unfold lt. now rewrite EQ.
 (* r = S r' *)
 rewrite plus_Sn_m, plus_n_Sm. apply IHk.
 now rewrite plus_Sn_m, plus_n_Sm.
 unfold lt.
 now apply lt_le_weak.
Qed.

Lemma log2_spec : forall n, 0<n ->
 2^(log2 n) <= n < 2^(S (log2 n)).
Proof.
 intros.
 set (s:=log2 n).
 replace n with (pred n + 1).
 apply log2_iter_spec; auto.
 rewrite <- plus_n_Sm, <- plus_n_O.
 symmetry. now apply S_pred with 0.
Qed.

Lemma log2_nonpos : forall n, n<=0 -> log2 n = 0.
Proof.
 inversion 1; now subst.
Qed.

(** * Gcd *)

(** We use Euclid algorithm, which is normally not structural,
    but Coq is now clever enough to accept this (behind modulo
    there is a subtraction, which now preserves being a subterm)
*)

Fixpoint gcd a b :=
  match a with
   | O => b
   | S a' => gcd (b mod (S a')) (S a')
  end.

Definition divide x y := exists z, y=z*x.
Notation "( x | y )" := (divide x y) (at level 0) : nat_scope.

Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b).
Proof.
 fix 1.
 intros [|a] b; simpl.
 split.
  now exists 0.
  exists 1. simpl. now rewrite <- plus_n_O.
 fold (b mod (S a)).
 destruct (gcd_divide (b mod (S a)) (S a)) as (H,H').
 set (a':=S a) in *.
 split; auto.
 rewrite (div_mod b a') at 2 by discriminate.
 destruct H as (u,Hu), H' as (v,Hv).
 rewrite mult_comm.
 exists ((b/a')*v + u).
 rewrite mult_plus_distr_r.
 now rewrite <- mult_assoc, <- Hv, <- Hu.
Qed.

Lemma gcd_divide_l : forall a b, (gcd a b | a).
Proof.
 intros. apply gcd_divide.
Qed.

Lemma gcd_divide_r : forall a b, (gcd a b | b).
Proof.
 intros. apply gcd_divide.
Qed.

Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b).
Proof.
 fix 1.
 intros [|a] b; simpl; auto.
 fold (b mod (S a)).
 intros c H H'. apply gcd_greatest; auto.
 set (a':=S a) in *.
 rewrite (div_mod b a') in H' by discriminate.
 destruct H as (u,Hu), H' as (v,Hv).
 exists (v - (b/a')*u).
 rewrite mult_comm in Hv.
 now rewrite mult_minus_distr_r, <- Hv, <-mult_assoc, <-Hu, minus_plus.
Qed.

(** * Bitwise operations *)

(** We provide here some bitwise operations for unary numbers.
  Some might be really naive, they are just there for fullfiling
  the same interface as other for natural representations. As
  soon as binary representations such as NArith are available,
  it is clearly better to convert to/from them and use their ops.
*)

Fixpoint testbit a n :=
 match n with
   | O => odd a
   | S n => testbit (div2 a) n
 end.

Definition shiftl a n := iter_nat n _ double a.
Definition shiftr a n := iter_nat n _ div2 a.

Fixpoint bitwise (op:bool->bool->bool) n a b :=
 match n with
  | O => O
  | S n' =>
    (if op (odd a) (odd b) then 1 else 0) +
    2*(bitwise op n' (div2 a) (div2 b))
 end.

Definition land a b := bitwise andb a a b.
Definition lor a b := bitwise orb (max a b) a b.
Definition ldiff a b := bitwise (fun b b' => b && negb b') a a b.
Definition lxor a b := bitwise xorb (max a b) a b.

Lemma double_twice : forall n, double n = 2*n.
Proof.
 simpl; intros. now rewrite <- plus_n_O.
Qed.

Lemma testbit_0_l : forall n, testbit 0 n = false.
Proof.
 now induction n.
Qed.

Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
Proof.
 unfold testbit. rewrite odd_spec. now exists a.
Qed.

Lemma testbit_even_0 a : testbit (2*a) 0 = false.
Proof.
 unfold testbit, odd. rewrite (proj2 (even_spec _)); trivial.
 now exists a.
Qed.

Lemma testbit_odd_succ a n : testbit (2*a+1) (S n) = testbit a n.
Proof.
 unfold testbit; fold testbit.
 rewrite <- plus_n_Sm, <- plus_n_O. f_equal.
 apply div2_double_plus_one.
Qed.

Lemma testbit_even_succ a n : testbit (2*a) (S n) = testbit a n.
Proof.
 unfold testbit; fold testbit. f_equal. apply div2_double.
Qed.

Lemma shiftr_spec : forall a n m,
 testbit (shiftr a n) m = testbit a (m+n).
Proof.
 induction n; intros m. trivial.
 now rewrite <- plus_n_O.
 now rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn.
Qed.

Lemma shiftl_spec_high : forall a n m, n<=m ->
 testbit (shiftl a n) m = testbit a (m-n).
Proof.
 induction n; intros m H. trivial.
 now rewrite <- minus_n_O.
 destruct m. inversion H.
 simpl. apply le_S_n in H.
 change (shiftl a (S n)) with (double (shiftl a n)).
 rewrite double_twice, div2_double. now apply IHn.
Qed.

Lemma shiftl_spec_low : forall a n m, m<n ->
 testbit (shiftl a n) m = false.
Proof.
 induction n; intros m H. inversion H.
 change (shiftl a (S n)) with (double (shiftl a n)).
 destruct m; simpl.
 unfold odd. apply negb_false_iff.
 apply even_spec. exists (shiftl a n). apply double_twice.
 rewrite double_twice, div2_double. apply IHn.
 now apply lt_S_n.
Qed.

Lemma div2_bitwise : forall op n a b,
 div2 (bitwise op (S n) a b) = bitwise op n (div2 a) (div2 b).
Proof.
 intros. unfold bitwise; fold bitwise.
 destruct (op (odd a) (odd b)).
 now rewrite div2_double_plus_one.
 now rewrite plus_O_n, div2_double.
Qed.

Lemma odd_bitwise : forall op n a b,
 odd (bitwise op (S n) a b) = op (odd a) (odd b).
Proof.
 intros. unfold bitwise; fold bitwise.
 destruct (op (odd a) (odd b)).
 apply odd_spec. rewrite plus_comm. eexists; eauto.
 unfold odd. apply negb_false_iff. apply even_spec.
 rewrite plus_O_n; eexists; eauto.
Qed.

Lemma div2_decr : forall a n, a <= S n -> div2 a <= n.
Proof.
 destruct a; intros. apply le_0_n.
 apply le_trans with a.
 apply lt_n_Sm_le, lt_div2, lt_0_Sn. now apply le_S_n.
Qed.

Lemma testbit_bitwise_1 : forall op, (forall b, op false b = false) ->
 forall n m a b, a<=n ->
 testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
Proof.
 intros op Hop.
 induction n; intros m a b Ha.
 simpl. inversion Ha; subst. now rewrite testbit_0_l.
 destruct m.
 apply odd_bitwise.
 unfold testbit; fold testbit. rewrite div2_bitwise.
 apply IHn; now apply div2_decr.
Qed.

Lemma testbit_bitwise_2 : forall op, op false false = false ->
 forall n m a b, a<=n -> b<=n ->
 testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
Proof.
 intros op Hop.
 induction n; intros m a b Ha Hb.
 simpl. inversion Ha; inversion Hb; subst. now rewrite testbit_0_l.
 destruct m.
 apply odd_bitwise.
 unfold testbit; fold testbit. rewrite div2_bitwise.
 apply IHn; now apply div2_decr.
Qed.

Lemma land_spec : forall a b n,
 testbit (land a b) n = testbit a n && testbit b n.
Proof.
 intros. unfold land. apply testbit_bitwise_1; trivial.
Qed.

Lemma ldiff_spec : forall a b n,
 testbit (ldiff a b) n = testbit a n && negb (testbit b n).
Proof.
 intros. unfold ldiff. apply testbit_bitwise_1; trivial.
Qed.

Lemma lor_spec : forall a b n,
 testbit (lor a b) n = testbit a n || testbit b n.
Proof.
 intros. unfold lor. apply testbit_bitwise_2. trivial.
 destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
 destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
Qed.

Lemma lxor_spec : forall a b n,
 testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
Proof.
 intros. unfold lxor. apply testbit_bitwise_2. trivial.
 destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
 destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
Qed.

(** * Implementation of [NAxiomsSig] by [nat] *)

Module Nat
 <: NAxiomsSig <: UsualDecidableTypeFull <: OrderedTypeFull <: TotalOrder.

(** Bi-directional induction. *)

Theorem bi_induction :
  forall A : nat -> Prop, Proper (eq==>iff) A ->
    A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
Proof.
intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
Qed.

(** Basic operations. *)

Definition eq_equiv : Equivalence (@eq nat) := eq_equivalence.
Local Obligation Tactic := simpl_relation.
Program Instance succ_wd : Proper (eq==>eq) S.
Program Instance pred_wd : Proper (eq==>eq) pred.
Program Instance add_wd : Proper (eq==>eq==>eq) plus.
Program Instance sub_wd : Proper (eq==>eq==>eq) minus.
Program Instance mul_wd : Proper (eq==>eq==>eq) mult.

Theorem pred_succ : forall n : nat, pred (S n) = n.
Proof.
reflexivity.
Qed.

Theorem one_succ : 1 = S 0.
Proof.
reflexivity.
Qed.

Theorem two_succ : 2 = S 1.
Proof.
reflexivity.
Qed.

Theorem add_0_l : forall n : nat, 0 + n = n.
Proof.
reflexivity.
Qed.

Theorem add_succ_l : forall n m : nat, (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.

Theorem sub_0_r : forall n : nat, n - 0 = n.
Proof.
intro n; now destruct n.
Qed.

Theorem sub_succ_r : forall n m : nat, n - (S m) = pred (n - m).
Proof.
induction n; destruct m; simpl; auto. apply sub_0_r.
Qed.

Theorem mul_0_l : forall n : nat, 0 * n = 0.
Proof.
reflexivity.
Qed.

Theorem mul_succ_l : forall n m : nat, S n * m = n * m + m.
Proof.
assert (add_S_r : forall n m, n+S m = S(n+m)) by (induction n; auto).
assert (add_comm : forall n m, n+m = m+n).
 induction n; simpl; auto. intros; rewrite add_S_r; auto.
intros n m; now rewrite add_comm.
Qed.

(** Order on natural numbers *)

Program Instance lt_wd : Proper (eq==>eq==>iff) lt.

Theorem lt_succ_r : forall n m : nat, n < S m <-> n <= m.
Proof.
unfold lt; split. apply le_S_n. induction 1; auto.
Qed.


Theorem lt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m.
Proof.
split.
inversion 1; auto. rewrite lt_succ_r; auto.
destruct 1; [|subst; auto]. rewrite <- lt_succ_r; auto.
Qed.

Theorem lt_irrefl : forall n : nat, ~ (n < n).
Proof.
induction n. intro H; inversion H. rewrite lt_succ_r; auto.
Qed.

(** Facts specific to natural numbers, not integers. *)

Theorem pred_0 : pred 0 = 0.
Proof.
reflexivity.
Qed.

(** Recursion fonction *)

Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A :=
  nat_rect (fun _ => A).

Instance recursion_wd {A} (Aeq : relation A) :
 Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
Proof.
intros a a' Ha f f' Hf n n' Hn. subst n'.
induction n; simpl; auto. apply Hf; auto.
Qed.

Theorem recursion_0 :
  forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a.
Proof.
reflexivity.
Qed.

Theorem recursion_succ :
  forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A),
    Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
      forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
unfold Proper, respectful in *; induction n; simpl; auto.
Qed.

(** The instantiation of operations.
    Placing them at the very end avoids having indirections in above lemmas. *)

Definition t := nat.
Definition eq := @eq nat.
Definition eqb := beq_nat.
Definition compare := nat_compare.
Definition zero := 0.
Definition one := 1.
Definition two := 2.
Definition succ := S.
Definition pred := pred.
Definition add := plus.
Definition sub := minus.
Definition mul := mult.
Definition lt := lt.
Definition le := le.
Definition ltb := ltb.
Definition leb := leb.

Definition min := min.
Definition max := max.
Definition max_l := max_l.
Definition max_r := max_r.
Definition min_l := min_l.
Definition min_r := min_r.

Definition eqb_eq := beq_nat_true_iff.
Definition compare_spec := nat_compare_spec.
Definition eq_dec := eq_nat_dec.
Definition leb_le := leb_le.
Definition ltb_lt := ltb_lt.

Definition Even := Even.
Definition Odd := Odd.
Definition even := even.
Definition odd := odd.
Definition even_spec := even_spec.
Definition odd_spec := odd_spec.

Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
Definition pow_0_r := pow_0_r.
Definition pow_succ_r := pow_succ_r.
Lemma pow_neg_r : forall a b, b<0 -> a^b = 0. inversion 1. Qed.
Definition pow := pow.

Definition square := square.
Definition square_spec := square_spec.

Definition log2_spec := log2_spec.
Definition log2_nonpos := log2_nonpos.
Definition log2 := log2.

Definition sqrt_spec a (Ha:0<=a) := sqrt_spec a.
Lemma sqrt_neg : forall a, a<0 -> sqrt a = 0. inversion 1. Qed.
Definition sqrt := sqrt.

Definition div := div.
Definition modulo := modulo.
Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
Definition div_mod := div_mod.
Definition mod_bound_pos := mod_bound_pos.

Definition divide := divide.
Definition gcd := gcd.
Definition gcd_divide_l := gcd_divide_l.
Definition gcd_divide_r := gcd_divide_r.
Definition gcd_greatest := gcd_greatest.
Lemma gcd_nonneg : forall a b, 0<=gcd a b.
Proof. intros. apply le_O_n. Qed.

Definition testbit := testbit.
Definition shiftl := shiftl.
Definition shiftr := shiftr.
Definition lxor := lxor.
Definition land := land.
Definition lor := lor.
Definition ldiff := ldiff.
Definition div2 := div2.

Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
Definition testbit_odd_0 := testbit_odd_0.
Definition testbit_even_0 := testbit_even_0.
Definition testbit_odd_succ a n (_:0<=n) := testbit_odd_succ a n.
Definition testbit_even_succ a n (_:0<=n) := testbit_even_succ a n.
Lemma testbit_neg_r a n (H:n<0) : testbit a n = false.
Proof. inversion H. Qed.
Definition shiftl_spec_low := shiftl_spec_low.
Definition shiftl_spec_high a n m (_:0<=m) := shiftl_spec_high a n m.
Definition shiftr_spec a n m (_:0<=m) := shiftr_spec a n m.
Definition lxor_spec := lxor_spec.
Definition land_spec := land_spec.
Definition lor_spec := lor_spec.
Definition ldiff_spec := ldiff_spec.
Definition div2_spec a : div2 a = shiftr a 1 := eq_refl _.

(** Generic Properties *)

Include NProp
 <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.

End Nat.

(** [Nat] contains an [order] tactic for natural numbers *)

(** Note that [Nat.order] is domain-agnostic: it will not prove
    [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)

Section TestOrder.
 Let test : forall x y, x<=y -> y<=x -> x=y.
 Proof.
 Nat.order.
 Qed.
End TestOrder.