summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Peano/NPeano.v
blob: 1c83da453216d7b69f42d72f56a5161c9b937bba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: NPeano.v 11040 2008-06-03 00:04:16Z letouzey $ i*)

Require Import Arith.
Require Import Min.
Require Import Max.
Require Import NSub.

Module NPeanoAxiomsMod <: NAxiomsSig.
Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := nat.
Definition NZeq := (@eq nat).
Definition NZ0 := 0.
Definition NZsucc := S.
Definition NZpred := pred.
Definition NZadd := plus.
Definition NZsub := minus.
Definition NZmul := mult.

Theorem NZeq_equiv : equiv nat NZeq.
Proof (eq_equiv nat).

Add Relation nat NZeq
 reflexivity proved by (proj1 NZeq_equiv)
 symmetry proved by (proj2 (proj2 NZeq_equiv))
 transitivity proved by (proj1 (proj2 NZeq_equiv))
as NZeq_rel.

(* If we say "Add Relation nat (@eq nat)" instead of "Add Relation nat NZeq"
then the theorem generated for succ_wd below is forall x, succ x = succ x,
which does not match the axioms in NAxiomsSig *)

Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Proof.
congruence.
Qed.

Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Proof.
congruence.
Qed.

Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
Proof.
congruence.
Qed.

Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
Proof.
congruence.
Qed.

Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
Proof.
congruence.
Qed.

Theorem NZinduction :
  forall A : nat -> Prop, predicate_wd (@eq nat) A ->
    A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
Proof.
intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
Qed.

Theorem NZpred_succ : forall n : nat, pred (S n) = n.
Proof.
reflexivity.
Qed.

Theorem NZadd_0_l : forall n : nat, 0 + n = n.
Proof.
reflexivity.
Qed.

Theorem NZadd_succ_l : forall n m : nat, (S n) + m = S (n + m).
Proof.
reflexivity.
Qed.

Theorem NZsub_0_r : forall n : nat, n - 0 = n.
Proof.
intro n; now destruct n.
Qed.

Theorem NZsub_succ_r : forall n m : nat, n - (S m) = pred (n - m).
Proof.
intros n m; induction n m using nat_double_ind; simpl; auto. apply NZsub_0_r.
Qed.

Theorem NZmul_0_l : forall n : nat, 0 * n = 0.
Proof.
reflexivity.
Qed.

Theorem NZmul_succ_l : forall n m : nat, S n * m = n * m + m.
Proof.
intros n m; now rewrite plus_comm.
Qed.

End NZAxiomsMod.

Definition NZlt := lt.
Definition NZle := le.
Definition NZmin := min.
Definition NZmax := max.

Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
Proof.
unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
Qed.

Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
Proof.
congruence.
Qed.

Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
Proof.
congruence.
Qed.

Theorem NZlt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m.
Proof.
intros n m; split.
apply le_lt_or_eq.
intro H; destruct H as [H | H].
now apply lt_le_weak. rewrite H; apply le_refl.
Qed.

Theorem NZlt_irrefl : forall n : nat, ~ (n < n).
Proof.
exact lt_irrefl.
Qed.

Theorem NZlt_succ_r : forall n m : nat, n < S m <-> n <= m.
Proof.
intros n m; split; [apply lt_n_Sm_le | apply le_lt_n_Sm].
Qed.

Theorem NZmin_l : forall n m : nat, n <= m -> NZmin n m = n.
Proof.
exact min_l.
Qed.

Theorem NZmin_r : forall n m : nat, m <= n -> NZmin n m = m.
Proof.
exact min_r.
Qed.

Theorem NZmax_l : forall n m : nat, m <= n -> NZmax n m = n.
Proof.
exact max_l.
Qed.

Theorem NZmax_r : forall n m : nat, n <= m -> NZmax n m = m.
Proof.
exact max_r.
Qed.

End NZOrdAxiomsMod.

Definition recursion : forall A : Type, A -> (nat -> A -> A) -> nat -> A :=
  fun A : Type => nat_rect (fun _ => A).
Implicit Arguments recursion [A].

Theorem succ_neq_0 : forall n : nat, S n <> 0.
Proof.
intros; discriminate.
Qed.

Theorem pred_0 : pred 0 = 0.
Proof.
reflexivity.
Qed.

Theorem recursion_wd : forall (A : Type) (Aeq : relation A),
  forall a a' : A, Aeq a a' ->
    forall f f' : nat -> A -> A, fun2_eq (@eq nat) Aeq Aeq f f' ->
      forall n n' : nat, n = n' ->
        Aeq (recursion a f n) (recursion a' f' n').
Proof.
unfold fun2_eq; induction n; intros n' Enn'; rewrite <- Enn' in *; simpl; auto.
Qed.

Theorem recursion_0 :
  forall (A : Type) (a : A) (f : nat -> A -> A), recursion a f 0 = a.
Proof.
reflexivity.
Qed.

Theorem recursion_succ :
  forall (A : Type) (Aeq : relation A) (a : A) (f : nat -> A -> A),
    Aeq a a -> fun2_wd (@eq nat) Aeq Aeq f ->
      forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
Proof.
induction n; simpl; auto.
Qed.

End NPeanoAxiomsMod.

(* Now we apply the largest property functor *)

Module Export NPeanoSubPropMod := NSubPropFunct NPeanoAxiomsMod.