summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/Nbasic.v
blob: 18d0262c907fda00e1bf2d22ef9cdd07e0f7b0a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

Require Import ZArith Ndigits.
Require Import BigNumPrelude.
Require Import Max.
Require Import DoubleType.
Require Import DoubleBase.
Require Import CyclicAxioms.
Require Import DoubleCyclic.

Arguments mk_zn2z_ops [t] ops.
Arguments mk_zn2z_ops_karatsuba [t] ops.
Arguments mk_zn2z_specs [t ops] specs.
Arguments mk_zn2z_specs_karatsuba [t ops] specs.
Arguments ZnZ.digits [t] Ops.
Arguments ZnZ.zdigits [t] Ops.

Lemma Pshiftl_nat_Zpower : forall n p,
  Zpos (Pos.shiftl_nat p n) = Zpos p * 2 ^ Z.of_nat n.
Proof.
 intros.
 rewrite Z.mul_comm.
 induction n. simpl; auto.
 transitivity (2 * (2 ^ Z.of_nat n * Zpos p)).
 rewrite <- IHn. auto.
 rewrite Z.mul_assoc.
 rewrite Nat2Z.inj_succ.
 rewrite <- Z.pow_succ_r; auto with zarith.
Qed.

(* To compute the necessary height *)

Fixpoint plength (p: positive) : positive :=
  match p with
    xH => xH
  | xO p1 => Pos.succ (plength p1)
  | xI p1 => Pos.succ (plength p1)
  end.

Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
assert (F: (forall p, 2 ^ (Zpos (Pos.succ p)) = 2 * 2 ^ Zpos p)%Z).
intros p; replace (Zpos (Pos.succ p)) with (1 + Zpos p)%Z.
rewrite Zpower_exp; auto with zarith.
rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith.
intros p; elim p; simpl plength; auto.
intros p1 Hp1; rewrite F; repeat rewrite Pos2Z.inj_xI.
assert (tmp: (forall p, 2 * p = p + p)%Z);
  try repeat rewrite tmp; auto with zarith.
intros p1 Hp1; rewrite F; rewrite (Pos2Z.inj_xO p1).
assert (tmp: (forall p, 2 * p = p + p)%Z);
  try repeat rewrite tmp; auto with zarith.
rewrite Z.pow_1_r; auto with zarith.
Qed.

Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Pos.pred p)))%Z.
intros p; case (Pos.succ_pred_or p); intros H1.
subst; simpl plength.
rewrite Z.pow_1_r; auto with zarith.
pattern p at 1; rewrite <- H1.
rewrite Pos2Z.inj_succ; unfold Z.succ; auto with zarith.
generalize (plength_correct (Pos.pred p)); auto with zarith.
Qed.

Definition Pdiv p q :=
  match Z.div (Zpos p) (Zpos q) with
    Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with
                 Z0 => q1
               | _ => (Pos.succ q1)
               end
  |  _ => xH
  end.

Theorem Pdiv_le: forall p q,
  Zpos p <= Zpos q * Zpos (Pdiv p q).
intros p q.
unfold Pdiv.
assert (H1: Zpos q > 0); auto with zarith.
assert (H1b: Zpos p >= 0); auto with zarith.
generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b).
generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Z.div.
  intros HH _; rewrite HH; rewrite Z.mul_0_r; rewrite Z.mul_1_r; simpl.
case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith.
intros q1 H2.
replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q).
  2: pattern (Zpos p) at 2; rewrite H2; auto with zarith.
generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2;
  case Z.modulo.
  intros HH _; rewrite HH; auto with zarith.
  intros r1 HH (_,HH1); rewrite HH; rewrite Pos2Z.inj_succ.
  unfold Z.succ; rewrite Z.mul_add_distr_l; auto with zarith.
  intros r1 _ (HH,_); case HH; auto.
intros q1 HH; rewrite HH.
unfold Z.ge; simpl Z.compare; intros HH1; case HH1; auto.
Qed.

Definition is_one p := match p with xH => true | _ => false end.

Theorem is_one_one: forall p, is_one p = true -> p = xH.
intros p; case p; auto; intros p1 H1; discriminate H1.
Qed.

Definition get_height digits p :=
  let r := Pdiv p digits in
   if is_one r then xH else Pos.succ (plength (Pos.pred r)).

Theorem get_height_correct:
  forall digits N,
   Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)).
intros digits N.
unfold get_height.
assert (H1 := Pdiv_le N digits).
case_eq (is_one (Pdiv N digits)); intros H2.
rewrite (is_one_one _ H2) in H1.
rewrite Z.mul_1_r in H1.
change (2^(1-1))%Z with 1; rewrite Z.mul_1_r; auto.
clear H2.
apply Z.le_trans with (1 := H1).
apply Z.mul_le_mono_nonneg_l; auto with zarith.
rewrite Pos2Z.inj_succ; unfold Z.succ.
rewrite Z.add_comm; rewrite Z.add_simpl_l.
apply plength_pred_correct.
Qed.

Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n.
 fix zn2z_word_comm 2.
 intros w n; case n.
  reflexivity.
  intros n0;simpl.
  case (zn2z_word_comm w n0).
  reflexivity.
Defined.

Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) :=
 match n return forall w:Type, zn2z w -> word w (S n) with
 | O => fun w x => x
 | S m =>
   let aux := extend m in
   fun w x => WW W0 (aux w x)
 end.

Section ExtendMax.

Open Scope nat_scope.

Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat :=
  match n return  (n + S m = S (n + m))%nat with
  | 0 => eq_refl (S m)
  | S n1 =>
      let v := S (S n1 + m) in
      eq_ind_r (fun n => S n = v) (eq_refl v) (plusnS n1 m)
  end.

Fixpoint plusn0 n : n + 0 = n :=
  match n return (n + 0 = n) with
  | 0 => eq_refl 0
  | S n1 =>
      let v := S n1 in
      eq_ind_r (fun n : nat => S n = v) (eq_refl v) (plusn0 n1)
  end.

 Fixpoint diff (m n: nat) {struct m}: nat * nat :=
   match m, n with
     O, n => (O, n)
   | m, O => (m, O)
   | S m1, S n1 => diff m1 n1
   end.

Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n :=
  match m return fst (diff m n) + n = max m n with
  | 0 =>
      match n return (n = max 0 n) with
      | 0 => eq_refl _
      | S n0 => eq_refl _
      end
  | S m1 =>
      match n return (fst (diff (S m1) n) + n = max (S m1) n)
      with
      | 0 => plusn0 _
      | S n1 =>
          let v := fst (diff m1 n1) + n1 in
          let v1 := fst (diff m1 n1) + S n1 in
          eq_ind v (fun n => v1 = S n)
            (eq_ind v1 (fun n => v1 = n) (eq_refl v1) (S v) (plusnS _ _))
            _ (diff_l _ _)
      end
  end.

Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n :=
  match m return (snd (diff m n) + m = max m n) with
  | 0 =>
      match n return (snd (diff 0 n) + 0 = max 0 n) with
      | 0 => eq_refl _
      | S _ => plusn0 _
      end
  | S m =>
      match n return (snd (diff (S m) n) + S m = max (S m) n) with
      | 0 => eq_refl (snd (diff (S m) 0) + S m)
      | S n1 =>
          let v := S (max m n1) in
          eq_ind_r (fun n => n = v)
            (eq_ind_r (fun n => S n = v)
               (eq_refl v) (diff_r _ _)) (plusnS _ _)
      end
  end.

 Variable w: Type.

 Definition castm (m n: nat) (H: m = n) (x: word w (S m)):
     (word w (S n)) :=
 match H in (_ = y) return (word w (S y)) with
 | eq_refl => x
 end.

Variable m: nat.
Variable v: (word w (S m)).

Fixpoint extend_tr (n : nat) {struct n}: (word w (S (n + m))) :=
  match n  return (word w (S (n + m))) with
  | O => v
  | S n1 => WW W0 (extend_tr n1)
  end.

End ExtendMax.

Arguments extend_tr [w m] v n.
Arguments castm     [w m n] H x.



Section Reduce.

 Variable w : Type.
 Variable nT : Type.
 Variable N0 : nT.
 Variable eq0 : w -> bool.
 Variable reduce_n : w -> nT.
 Variable zn2z_to_Nt : zn2z w -> nT.

 Definition reduce_n1 (x:zn2z w) :=
  match x with
  | W0 => N0
  | WW xh xl =>
    if eq0 xh then reduce_n xl
    else zn2z_to_Nt x
  end.

End Reduce.

Section ReduceRec.

 Variable w : Type.
 Variable nT : Type.
 Variable N0 : nT.
 Variable reduce_1n : zn2z w -> nT.
 Variable c : forall n, word w (S n) -> nT.

 Fixpoint reduce_n (n:nat) : word w (S n) -> nT :=
  match n return word w (S n) -> nT with
  | O => reduce_1n
  | S m => fun x =>
    match x with
    | W0 => N0
    | WW xh xl =>
      match xh with
      | W0 => @reduce_n m xl
      | _ => @c (S m) x
      end
    end
  end.

End ReduceRec.

Section CompareRec.

 Variable wm w : Type.
 Variable w_0 : w.
 Variable compare : w -> w -> comparison.
 Variable compare0_m : wm -> comparison.
 Variable compare_m : wm -> w -> comparison.

 Fixpoint compare0_mn (n:nat) : word wm n -> comparison :=
  match n return word wm n -> comparison with
  | O => compare0_m
  | S m => fun x =>
    match x with
    | W0 => Eq
    | WW xh xl =>
      match compare0_mn m xh with
      | Eq => compare0_mn m xl
      | r  => Lt
      end
    end
  end.

 Variable wm_base: positive.
 Variable wm_to_Z: wm -> Z.
 Variable w_to_Z: w -> Z.
 Variable w_to_Z_0: w_to_Z w_0 = 0.
 Variable spec_compare0_m: forall x,
   compare0_m x = (w_to_Z w_0 ?= wm_to_Z x).
 Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base.

 Let double_to_Z := double_to_Z wm_base wm_to_Z.
 Let double_wB := double_wB wm_base.

 Lemma base_xO: forall n, base (xO n) = (base n)^2.
 Proof.
 intros n1; unfold base.
 rewrite (Pos2Z.inj_xO n1); rewrite Z.mul_comm; rewrite Z.pow_mul_r; auto with zarith.
 Qed.

 Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n :=
   (spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos).

 Declare Equivalent Keys compare0_mn compare0_m.

 Lemma spec_compare0_mn: forall n x,
   compare0_mn n x = (0 ?= double_to_Z n x).
 Proof.
  intros n; elim n; clear n; auto.
  intros x; rewrite spec_compare0_m; rewrite w_to_Z_0; auto.
  intros n Hrec x; case x; unfold compare0_mn; fold compare0_mn; auto.
  fold word in *.
  intros xh xl.
  rewrite 2 Hrec.
  simpl double_to_Z.
  set (wB := DoubleBase.double_wB wm_base n).
  case Z.compare_spec; intros Cmp.
  rewrite <- Cmp. reflexivity.
  symmetry. apply Z.gt_lt, Z.lt_gt. (* ;-) *)
  assert (0 < wB).
   unfold wB, DoubleBase.double_wB, base; auto with zarith.
  change 0 with (0 + 0); apply Z.add_lt_le_mono; auto with zarith.
  apply Z.mul_pos_pos; auto with zarith.
  case (double_to_Z_pos n xl); auto with zarith.
  case (double_to_Z_pos n xh); intros; exfalso; omega.
  Qed.

 Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
  match n return word wm n -> w -> comparison with
  | O => compare_m
  | S m => fun x y =>
    match x with
    | W0 => compare w_0 y
    | WW xh xl =>
      match compare0_mn m xh with
      | Eq => compare_mn_1 m xl y
      | r  => Gt
      end
    end
  end.

 Variable spec_compare: forall x y,
   compare x y = Z.compare (w_to_Z x) (w_to_Z y).
 Variable spec_compare_m: forall x y,
   compare_m x y = Z.compare (wm_to_Z x) (w_to_Z y).
 Variable wm_base_lt: forall x,
   0 <= w_to_Z x < base (wm_base).

 Let double_wB_lt: forall n x,
   0 <= w_to_Z x < (double_wB n).
 Proof.
 intros n x; elim n; simpl; auto; clear n.
 intros n (H0, H); split; auto.
 apply Z.lt_le_trans with (1:= H).
 unfold double_wB, DoubleBase.double_wB; simpl.
 rewrite base_xO.
 set (u := base (Pos.shiftl_nat wm_base n)).
 assert (0 < u).
  unfold u, base; auto with zarith.
 replace (u^2) with (u * u); simpl; auto with zarith.
 apply Z.le_trans with (1 * u); auto with zarith.
 unfold Z.pow_pos; simpl; ring.
 Qed.


 Lemma spec_compare_mn_1: forall n x y,
   compare_mn_1 n x y = Z.compare (double_to_Z n x) (w_to_Z y).
 Proof.
 intros n; elim n; simpl; auto; clear n.
 intros n Hrec x; case x; clear x; auto.
 intros y; rewrite spec_compare; rewrite w_to_Z_0. reflexivity.
 intros xh xl y; simpl;
 rewrite spec_compare0_mn, Hrec. case Z.compare_spec.
 intros H1b.
 rewrite <- H1b; rewrite Z.mul_0_l; rewrite Z.add_0_l; auto.
 symmetry. apply Z.lt_gt.
 case (double_wB_lt n y); intros _ H0.
 apply Z.lt_le_trans with (1:= H0).
 fold double_wB.
 case (double_to_Z_pos n xl); intros H1 H2.
 apply Z.le_trans with (double_to_Z n xh * double_wB n); auto with zarith.
 apply Z.le_trans with (1 * double_wB n); auto with zarith.
 case (double_to_Z_pos n xh); intros; exfalso; omega.
 Qed.

End CompareRec.


Section AddS.

 Variable w wm : Type.
 Variable incr : wm -> carry wm.
 Variable addr : w -> wm -> carry wm.
 Variable injr : w -> zn2z wm.

 Variable w_0 u: w.
 Fixpoint injs  (n:nat): word w (S n) :=
  match n return (word w (S n)) with
    O => WW w_0 u
  | S n1 => (WW W0 (injs n1))
  end.

 Definition adds x y :=
   match y with
    W0 => C0 (injr x)
  | WW hy ly => match addr x ly with
                  C0 z => C0 (WW hy z)
                | C1 z => match incr hy with
                            C0 z1 => C0 (WW z1 z)
                          | C1 z1 => C1 (WW z1 z)
                          end
                 end
   end.

End AddS.

 Fixpoint length_pos x :=
  match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end.

 Theorem length_pos_lt: forall x y,
   (length_pos x < length_pos y)%nat -> Zpos x < Zpos y.
 Proof.
 intros x; elim x; clear x; [intros x1 Hrec | intros x1 Hrec | idtac];
   intros y; case y; clear y; intros y1 H || intros H; simpl length_pos;
   try (rewrite (Pos2Z.inj_xI x1) || rewrite (Pos2Z.inj_xO x1));
   try (rewrite (Pos2Z.inj_xI y1) || rewrite (Pos2Z.inj_xO y1));
   try (inversion H; fail);
   try (assert (Zpos x1 < Zpos y1); [apply Hrec; apply lt_S_n | idtac]; auto with zarith);
   assert (0 < Zpos y1); auto with zarith; red; auto.
 Qed.

 Theorem cancel_app: forall A B (f g: A -> B) x, f = g -> f x = g x.
 Proof.
 intros A B f g x H; rewrite H; auto.
 Qed.


 Section SimplOp.

 Variable w: Type.

 Theorem digits_zop: forall t (ops : ZnZ.Ops t),
  ZnZ.digits (mk_zn2z_ops ops) = xO (ZnZ.digits ops).
 Proof.
 intros ww x; auto.
 Qed.

 Theorem digits_kzop: forall t (ops : ZnZ.Ops t),
  ZnZ.digits (mk_zn2z_ops_karatsuba ops) = xO (ZnZ.digits ops).
 Proof.
 intros ww x; auto.
 Qed.

 Theorem make_zop: forall t (ops : ZnZ.Ops t),
  @ZnZ.to_Z _ (mk_zn2z_ops ops) =
    fun z => match z with
             | W0 => 0
             | WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops)
                                + ZnZ.to_Z xl
             end.
 Proof.
 intros ww x; auto.
 Qed.

 Theorem make_kzop: forall t (ops: ZnZ.Ops t),
  @ZnZ.to_Z _ (mk_zn2z_ops_karatsuba ops) =
    fun z => match z with
             | W0 => 0
             | WW xh xl => ZnZ.to_Z xh * base (ZnZ.digits ops)
                                + ZnZ.to_Z xl
             end.
 Proof.
 intros ww x; auto.
 Qed.

 End SimplOp.

(** Abstract vision of a datatype of arbitrary-large numbers.
    Concrete operations can be derived from these generic
    fonctions, in particular from [iter_t] and [same_level].
*)

Module Type NAbstract.

(** The domains: a sequence of [Z/nZ] structures *)

Parameter dom_t : nat -> Type.
Declare Instance dom_op n : ZnZ.Ops (dom_t n).
Declare Instance dom_spec n : ZnZ.Specs (dom_op n).

Axiom digits_dom_op : forall n,
  ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op 0)) n.

(** The type [t] of arbitrary-large numbers, with abstract constructor [mk_t]
    and destructor [destr_t] and iterator [iter_t] *)

Parameter t : Type.

Parameter mk_t : forall (n:nat), dom_t n -> t.

Inductive View_t : t -> Prop :=
 Mk_t : forall n (x : dom_t n), View_t (mk_t n x).

Axiom destr_t : forall x, View_t x. (* i.e. every x is a (mk_t n xw) *)

Parameter iter_t : forall {A:Type}(f : forall n, dom_t n -> A), t -> A.

Axiom iter_mk_t : forall A (f:forall n, dom_t n -> A),
 forall n x, iter_t f (mk_t n x) = f n x.

(** Conversion to [ZArith] *)

Parameter to_Z : t -> Z.
Local Notation "[ x ]" := (to_Z x).

Axiom spec_mk_t : forall n x, [mk_t n x] = ZnZ.to_Z x.

(** [reduce] is like [mk_t], but try to minimise the level of the number *)

Parameter reduce : forall (n:nat), dom_t n -> t.
Axiom spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x.

(** Number of level in the tree representation of a number.
    NB: This function isn't a morphism for setoid [eq]. *)

Definition level := iter_t (fun n _ => n).

(** [same_level] and its rich specification, indexed by [level] *)

Parameter same_level : forall {A:Type}
 (f : forall n, dom_t n -> dom_t n -> A), t -> t -> A.

Axiom spec_same_level_dep :
  forall res
   (P : nat -> Z -> Z -> res -> Prop)
   (Pantimon : forall n m z z' r, (n <= m)%nat -> P m z z' r -> P n z z' r)
   (f : forall n, dom_t n -> dom_t n -> res)
   (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
   forall x y, P (level x) [x] [y] (same_level f x y).

(** [mk_t_S] : building a number of the next level *)

Parameter mk_t_S : forall (n:nat), zn2z (dom_t n) -> t.

Axiom spec_mk_t_S : forall n (x:zn2z (dom_t n)),
  [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.

Axiom mk_t_S_level : forall n x, level (mk_t_S n x) = S n.

End NAbstract.