summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/NMake_gen.ml
blob: 5177fae65fcb7f321d7524befb281f01d6fc4fd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(*S NMake_gen.ml : this file generates NMake_gen.v *)


(*s The parameter that control the generation: *)

let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ
                process before relying on a generic construct *)

(*s Some utilities *)

let rec iter_str n s = if n = 0 then "" else (iter_str (n-1) s) ^ s

let rec iter_str_gen n f = if n < 0 then "" else (iter_str_gen (n-1) f) ^ (f n)

let rec iter_name i j base sep =
  if i >= j then base^(string_of_int i)
  else (iter_name i (j-1) base sep)^sep^" "^base^(string_of_int j)

let pr s = Printf.printf (s^^"\n")

(*s The actual printing *)

let _ =

pr
"(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \\VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(** * NMake_gen *)

(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)

(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)

Require Import BigNumPrelude ZArith Ndigits CyclicAxioms
 DoubleType DoubleMul DoubleDivn1 DoubleCyclic Nbasic
 Wf_nat StreamMemo.

Module Make (W0:CyclicType) <: NAbstract.

 (** * The word types *)
";

pr " Local Notation w0 := W0.t.";
for i = 1 to size do
  pr " Definition w%i := zn2z w%i." i (i-1)
done;
pr "";

pr " (** * The operation type classes for the word types *)
";

pr " Local Notation w0_op := W0.ops.";
for i = 1 to min 3 size do
  pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops w%i_op." i i (i-1)
done;
for i = 4 to size do
  pr " Instance w%i_op : ZnZ.Ops w%i := mk_zn2z_ops_karatsuba w%i_op." i i (i-1)
done;
for i = size+1 to size+3 do
  pr " Instance w%i_op : ZnZ.Ops (word w%i %i) := mk_zn2z_ops_karatsuba w%i_op." i size (i-size) (i-1)
done;
pr "";

  pr " Section Make_op.";
  pr "  Variable mk : forall w', ZnZ.Ops w' -> ZnZ.Ops (zn2z w').";
  pr "";
  pr "  Fixpoint make_op_aux (n:nat) : ZnZ.Ops (word w%i (S n)):=" size;
  pr "   match n return ZnZ.Ops (word w%i (S n)) with" size;
  pr "   | O => w%i_op" (size+1);
  pr "   | S n1 =>";
  pr "     match n1 return ZnZ.Ops (word w%i (S (S n1))) with" size;
  pr "     | O => w%i_op" (size+2);
  pr "     | S n2 =>";
  pr "       match n2 return ZnZ.Ops (word w%i (S (S (S n2)))) with" size;
  pr "       | O => w%i_op" (size+3);
  pr "       | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))";
  pr "       end";
  pr "     end";
  pr "   end.";
  pr "";
  pr " End Make_op.";
  pr "";
  pr " Definition omake_op := make_op_aux mk_zn2z_ops_karatsuba.";
  pr "";
  pr "";
  pr " Definition make_op_list := dmemo_list _ omake_op.";
  pr "";
  pr " Instance make_op n : ZnZ.Ops (word w%i (S n))" size;
  pr "  := dmemo_get _ omake_op n make_op_list.";
  pr "";

pr " Ltac unfold_ops := unfold omake_op, make_op_aux, w%i_op, w%i_op." (size+3) (size+2);

pr
"
 Lemma make_op_omake: forall n, make_op n = omake_op n.
 Proof.
 intros n; unfold make_op, make_op_list.
 refine (dmemo_get_correct _ _ _).
 Qed.

 Theorem make_op_S: forall n,
   make_op (S n) = mk_zn2z_ops_karatsuba (make_op n).
 Proof.
 intros n. do 2 rewrite make_op_omake.
 revert n. fix IHn 1.
 do 3 (destruct n; [unfold_ops; reflexivity|]).
 simpl mk_zn2z_ops_karatsuba. simpl word in *.
 rewrite <- (IHn n). auto.
 Qed.

 (** * The main type [t], isomorphic with [exists n, word w0 n] *)
";

  pr " Inductive t' :=";
  for i = 0 to size do
    pr "  | N%i : w%i -> t'" i i
  done;
  pr "  | Nn : forall n, word w%i (S n) -> t'." size;
  pr "";
  pr " Definition t := t'.";
  pr "";

  pr " (** * A generic toolbox for building and deconstructing [t] *)";
  pr "";

  pr " Local Notation SizePlus n := %sn%s."
    (iter_str size "(S ") (iter_str size ")");
  pr " Local Notation Size := (SizePlus O).";
  pr "";

  pr " Tactic Notation (at level 3) \"do_size\" tactic3(t) := do %i t." (size+1);
  pr "";

  pr " Definition dom_t n := match n with";
  for i = 0 to size do
    pr "  | %i => w%i" i i;
  done;
  pr "  | %sn => word w%i n" (if size=0 then "" else "SizePlus ") size;
  pr " end.";
  pr "";

pr
" Instance dom_op n : ZnZ.Ops (dom_t n) | 10.
 Proof.
  do_size (destruct n; [simpl;auto with *|]).
  unfold dom_t. auto with *.
 Defined.
";

  pr " Definition iter_t {A:Type}(f : forall n, dom_t n -> A) : t -> A :=";
  for i = 0 to size do
   pr "  let f%i := f %i in" i i;
  done;
  pr "  let fn n := f (SizePlus (S n)) in";
  pr "  fun x => match x with";
  for i = 0 to size do
    pr "   | N%i wx => f%i wx" i i;
  done;
  pr "   | Nn n wx => fn n wx";
  pr "  end.";
  pr "";

  pr " Definition mk_t (n:nat) : dom_t n -> t :=";
  pr "  match n as n' return dom_t n' -> t with";
  for i = 0 to size do
    pr "   | %i => N%i" i i;
  done;
  pr "   | %s(S n) => Nn n" (if size=0 then "" else "SizePlus ");
  pr "  end.";
  pr "";

pr
" Definition level := iter_t (fun n _ => n).

 Inductive View_t : t -> Prop :=
  Mk_t : forall n (x : dom_t n), View_t (mk_t n x).

 Lemma destr_t : forall x, View_t x.
 Proof.
 intros x. generalize (Mk_t (level x)). destruct x; simpl; auto.
 Defined.

 Lemma iter_mk_t : forall A (f:forall n, dom_t n -> A),
 forall n x, iter_t f (mk_t n x) = f n x.
 Proof.
 do_size (destruct n; try reflexivity).
 Qed.

 (** * Projection to ZArith *)

 Definition to_Z : t -> Z :=
  Eval lazy beta iota delta [iter_t dom_t dom_op] in
  iter_t (fun _ x => ZnZ.to_Z x).

 Notation \"[ x ]\" := (to_Z x).

 Theorem spec_mk_t : forall n (x:dom_t n), [mk_t n x] = ZnZ.to_Z x.
 Proof.
 intros. change to_Z with (iter_t (fun _ x => ZnZ.to_Z x)).
 rewrite iter_mk_t; auto.
 Qed.

 (** * Regular make op, without memoization or karatsuba

     This will normally never be used for actual computations,
     but only for specification purpose when using
     [word (dom_t n) m] intermediate values. *)

 Fixpoint nmake_op (ww:Type) (ww_op: ZnZ.Ops ww) (n: nat) :
       ZnZ.Ops (word ww n) :=
  match n return ZnZ.Ops (word ww n) with
   O => ww_op
  | S n1 => mk_zn2z_ops (nmake_op ww ww_op n1)
  end.

 Definition eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m).

 Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x,
   nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x).
 Proof.
 auto.
 Qed.

 Theorem digits_nmake_S :forall n ww (w_op: ZnZ.Ops ww),
    ZnZ.digits (nmake_op _ w_op (S n)) =
    xO (ZnZ.digits (nmake_op _ w_op n)).
 Proof.
 auto.
 Qed.

 Theorem digits_nmake : forall n ww (w_op: ZnZ.Ops ww),
    ZnZ.digits (nmake_op _ w_op n) = Pos.shiftl_nat (ZnZ.digits w_op) n.
 Proof.
 induction n. auto.
 intros ww ww_op. rewrite Pshiftl_nat_S, <- IHn; auto.
 Qed.

 Theorem nmake_double: forall n ww (w_op: ZnZ.Ops ww),
    ZnZ.to_Z (Ops:=nmake_op _ w_op n) =
    @DoubleBase.double_to_Z _ (ZnZ.digits w_op) (ZnZ.to_Z (Ops:=w_op)) n.
 Proof.
 intros n; elim n; auto; clear n.
 intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.
 rewrite <- Hrec; auto.
 unfold DoubleBase.double_wB; rewrite <- digits_nmake; auto.
 Qed.

 Theorem nmake_WW: forall ww ww_op n xh xl,
  (ZnZ.to_Z (Ops:=nmake_op ww ww_op (S n)) (WW xh xl) =
   ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xh *
    base (ZnZ.digits (nmake_op ww ww_op n)) +
   ZnZ.to_Z (Ops:=nmake_op ww ww_op n) xl)%%Z.
 Proof.
 auto.
 Qed.

 (** * The specification proofs for the word operators *)
";

  if size <> 0 then
  pr " Typeclasses Opaque %s." (iter_name 1 size "w" "");
  pr "";

  pr " Instance w0_spec: ZnZ.Specs w0_op := W0.specs.";
  for i = 1 to min 3 size do
    pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs w%i_spec." i i (i-1)
  done;
  for i = 4 to size do
    pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." i i (i-1)
  done;
  pr " Instance w%i_spec: ZnZ.Specs w%i_op := mk_zn2z_specs_karatsuba w%i_spec." (size+1) (size+1) size;


pr "
 Instance wn_spec (n:nat) : ZnZ.Specs (make_op n).
 Proof.
  induction n.
  rewrite make_op_omake; simpl; auto with *.
  rewrite make_op_S. exact (mk_zn2z_specs_karatsuba IHn).
 Qed.

 Instance dom_spec n : ZnZ.Specs (dom_op n) | 10.
 Proof.
  do_size (destruct n; auto with *). apply wn_spec.
 Qed.

 Let make_op_WW : forall n x y,
   (ZnZ.to_Z (Ops:=make_op (S n)) (WW x y) =
    ZnZ.to_Z (Ops:=make_op n) x * base (ZnZ.digits (make_op n))
     + ZnZ.to_Z (Ops:=make_op n) y)%%Z.
 Proof.
 intros n x y; rewrite make_op_S; auto.
 Qed.

 (** * Zero *)

 Definition zero0 : w0 := ZnZ.zero.

 Definition zeron n : dom_t n :=
  match n with
   | O => zero0
   | SizePlus (S n) => W0
   | _ => W0
  end.

 Lemma spec_zeron : forall n, ZnZ.to_Z (zeron n) = 0%%Z.
 Proof.
   do_size (destruct n;
            [match goal with
             |- @eq Z (_ (zeron ?n)) _ => 
               apply (ZnZ.spec_0 (Specs:=dom_spec n))
             end|]).
  destruct n; auto. simpl. rewrite make_op_S. fold word. 
  apply (ZnZ.spec_0 (Specs:=wn_spec (SizePlus 0))).
 Qed.

 (** * Digits *)

 Lemma digits_make_op_0 : forall n,
  ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits (dom_op Size)) (S n).
 Proof.
 induction n.
 auto.
 replace (ZnZ.digits (make_op (S n))) with (xO (ZnZ.digits (make_op n))).
  rewrite IHn; auto.
 rewrite make_op_S; auto.
 Qed.

 Lemma digits_make_op : forall n,
  ZnZ.digits (make_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) (SizePlus (S n)).
 Proof.
 intros. rewrite digits_make_op_0.
 replace (SizePlus (S n)) with (S n + Size) by (rewrite <- plus_comm; auto).
 rewrite Pshiftl_nat_plus. auto.
 Qed.

 Lemma digits_dom_op : forall n,
  ZnZ.digits (dom_op n) = Pos.shiftl_nat (ZnZ.digits w0_op) n.
 Proof.
 do_size (destruct n; try reflexivity).
 exact (digits_make_op n).
 Qed.

 Lemma digits_dom_op_nmake : forall n m,
  ZnZ.digits (dom_op (m+n)) = ZnZ.digits (nmake_op _ (dom_op n) m).
 Proof.
 intros. rewrite digits_nmake, 2 digits_dom_op. apply Pshiftl_nat_plus.
 Qed.

 (** * Conversion between [zn2z (dom_t n)] and [dom_t (S n)].

     These two types are provably equal, but not convertible,
     hence we need some work. We now avoid using generic casts
     (i.e. rewrite via proof of equalities in types), since
     proving things with them is a mess.
 *)

 Definition succ_t n : zn2z (dom_t n) -> dom_t (S n) :=
  match n with
   | SizePlus (S _) => fun x => x
   | _ => fun x => x
  end.

 Lemma spec_succ_t : forall n x,
  ZnZ.to_Z (succ_t n x) =
  zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
 Proof.
 do_size (destruct n ; [reflexivity|]).
 intros. simpl. rewrite make_op_S. simpl. auto.
 Qed.

 Definition pred_t n : dom_t (S n) -> zn2z (dom_t n) :=
  match n with
   | SizePlus (S _) => fun x => x
   | _ => fun x => x
  end.

 Lemma succ_pred_t : forall n x, succ_t n (pred_t n x) = x.
 Proof.
 do_size (destruct n ; [reflexivity|]). reflexivity.
 Qed.

 (** We can hence project from [zn2z (dom_t n)] to [t] : *)

 Definition mk_t_S n (x : zn2z (dom_t n)) : t :=
  mk_t (S n) (succ_t n x).

 Lemma spec_mk_t_S : forall n x,
  [mk_t_S n x] = zn2z_to_Z (base (ZnZ.digits (dom_op n))) ZnZ.to_Z x.
 Proof.
 intros. unfold mk_t_S. rewrite spec_mk_t. apply spec_succ_t.
 Qed.

 Lemma mk_t_S_level : forall n x, level (mk_t_S n x) = S n.
 Proof.
 intros. unfold mk_t_S, level. rewrite iter_mk_t; auto.
 Qed.

 (** * Conversion from [word (dom_t n) m] to [dom_t (m+n)].

     Things are more complex here. We start with a naive version
     that breaks zn2z-trees and reconstruct them. Doing this is
     quite unfortunate, but I don't know how to fully avoid that.
     (cast someday ?). Then we build an optimized version where
     all basic cases (n<=6 or m<=7) are nicely handled.
 *)

 Definition zn2z_map {A} {B} (f:A->B) (x:zn2z A) : zn2z B :=
  match x with
   | W0 => W0
   | WW h l => WW (f h) (f l)
  end.

 Lemma zn2z_map_id : forall A f (x:zn2z A), (forall u, f u = u) ->
   zn2z_map f x = x.
 Proof.
  destruct x; auto; intros.
  simpl; f_equal; auto.
 Qed.

 (** The naive version *)

 Fixpoint plus_t n m : word (dom_t n) m -> dom_t (m+n) :=
  match m as m' return word (dom_t n) m' -> dom_t (m'+n) with
   | O => fun x => x
   | S m => fun x => succ_t _ (zn2z_map (plus_t n m) x)
  end.

 Theorem spec_plus_t : forall n m (x:word (dom_t n) m),
  ZnZ.to_Z (plus_t n m x) = eval n m x.
 Proof.
 unfold eval.
 induction m.
 simpl; auto.
 intros.
 simpl plus_t; simpl plus. rewrite spec_succ_t.
 destruct x.
 simpl; auto.
 fold word in w, w0.
 simpl. rewrite 2 IHm. f_equal. f_equal. f_equal.
 apply digits_dom_op_nmake.
 Qed.

 Definition mk_t_w n m (x:word (dom_t n) m) : t :=
   mk_t (m+n) (plus_t n m x).

 Theorem spec_mk_t_w : forall n m (x:word (dom_t n) m),
  [mk_t_w n m x] = eval n m x.
 Proof.
 intros. unfold mk_t_w. rewrite spec_mk_t. apply spec_plus_t.
 Qed.

 (** The optimized version.

     NB: the last particular case for m could depend on n,
     but it's simplier to just expand everywhere up to m=7
     (cf [mk_t_w'] later).
 *)

 Definition plus_t' n : forall m, word (dom_t n) m -> dom_t (m+n) :=
   match n return (forall m, word (dom_t n) m -> dom_t (m+n)) with
     | SizePlus (S n') as n => plus_t n
     | _ as n =>
         fun m => match m return (word (dom_t n) m -> dom_t (m+n)) with
                    | SizePlus (S (S m')) as m => plus_t n m
                    | _ => fun x => x
                  end
   end.

 Lemma plus_t_equiv : forall n m x,
  plus_t' n m x = plus_t n m x.
 Proof.
  (do_size try destruct n); try reflexivity;
   (do_size try destruct m); try destruct m; try reflexivity;
     simpl; symmetry; repeat (intros; apply zn2z_map_id; trivial).
 Qed.

 Lemma spec_plus_t' : forall n m x,
  ZnZ.to_Z (plus_t' n m x) = eval n m x.
 Proof.
 intros; rewrite plus_t_equiv. apply spec_plus_t.
 Qed.

 (** Particular cases [Nk x] = eval i j x with specific k,i,j
     can be solved by the following tactic *)

 Ltac solve_eval :=
  intros; rewrite <- spec_plus_t'; unfold to_Z; simpl dom_op; reflexivity.

 (** The last particular case that remains useful *)

 Lemma spec_eval_size : forall n x, [Nn n x] = eval Size (S n) x.
 Proof.
 induction n.
 solve_eval.
 destruct x as [ | xh xl ].
  simpl. unfold eval. rewrite make_op_S. rewrite nmake_op_S. auto.
 simpl word in xh, xl |- *.
 unfold to_Z in *. rewrite make_op_WW.
 unfold eval in *. rewrite nmake_WW.
 f_equal; auto.
 f_equal; auto.
 f_equal.
 rewrite <- digits_dom_op_nmake. rewrite plus_comm; auto.
 Qed.

 (** An optimized [mk_t_w].

     We could say mk_t_w' := mk_t _ (plus_t' n m x)
     (TODO: WHY NOT, BTW ??).
     Instead we directly define functions for all intersting [n],
     reverting to naive [mk_t_w] at places that should normally
     never be used (see [mul] and [div_gt]).
 *)
";

for i = 0 to size-1 do
let pattern = (iter_str (size+1-i) "(S ") ^ "_" ^ (iter_str (size+1-i) ")") in
pr
" Definition mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in
  match m return word w%i (S m) -> t with
    | %s as p => mk_t_w %i (S p)
    | p => mk_t (%i+p)
  end.
" i i pattern i (i+1)
done;

pr
" Definition mk_t_w' n : forall m, word (dom_t n) (S m) -> t :=
  match n return (forall m, word (dom_t n) (S m) -> t) with";
for i = 0 to size-1 do pr "    | %i => mk_t_%iw" i i done;
pr
"    | Size => Nn
    | _ as n' => fun m => mk_t_w n' (S m)
  end.
";

pr
" Ltac solve_spec_mk_t_w' :=
  rewrite <- spec_plus_t';
  match goal with _ : word (dom_t ?n) ?m |- _ => apply (spec_mk_t (n+m)) end.

 Theorem spec_mk_t_w' :
  forall n m x, [mk_t_w' n m x] = eval n (S m) x.
 Proof.
 intros.
 repeat (apply spec_mk_t_w || (destruct n;
  [repeat (apply spec_mk_t_w || (destruct m; [solve_spec_mk_t_w'|]))|])).
 apply spec_eval_size.
 Qed.

 (** * Extend : injecting [dom_t n] into [word (dom_t n) (S m)] *)

 Definition extend n m (x:dom_t n) : word (dom_t n) (S m) :=
  DoubleBase.extend_aux m (WW (zeron n) x).

 Lemma spec_extend : forall n m x,
  [mk_t n x] = eval n (S m) (extend n m x).
 Proof.
 intros. unfold eval, extend.
 rewrite spec_mk_t.
 assert (H : forall (x:dom_t n),
              (ZnZ.to_Z (zeron n) * base (ZnZ.digits (dom_op n)) + ZnZ.to_Z x =
              ZnZ.to_Z x)%%Z).
  clear; intros; rewrite spec_zeron; auto.
 rewrite <- (@DoubleBase.spec_extend _
              (WW (zeron n)) (ZnZ.digits (dom_op n)) ZnZ.to_Z H m x).
 simpl. rewrite digits_nmake, <- nmake_double. auto.
 Qed.

 (** A particular case of extend, used in [same_level]:
     [extend_size] is [extend Size] *)

 Definition extend_size := DoubleBase.extend (WW (W0:dom_t Size)).

 Lemma spec_extend_size : forall n x, [mk_t Size x] = [Nn n (extend_size n x)].
 Proof.
 intros. rewrite spec_eval_size. apply (spec_extend Size n).
 Qed.

 (** Misc results about extensions *)

 Let spec_extend_WW : forall n x,
  [Nn (S n) (WW W0 x)] = [Nn n x].
 Proof.
 intros n x.
 set (N:=SizePlus (S n)).
 change ([Nn (S n) (extend N 0 x)]=[mk_t N x]).
 rewrite (spec_extend N 0).
 solve_eval.
 Qed.

 Let spec_extend_tr: forall m n w,
 [Nn (m + n) (extend_tr w m)] = [Nn n w].
 Proof.
 induction m; auto.
 intros n x; simpl extend_tr.
 simpl plus; rewrite spec_extend_WW; auto.
 Qed.

 Let spec_cast_l: forall n m x1,
 [Nn n x1] =
 [Nn (Max.max n m) (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))].
 Proof.
 intros n m x1; case (diff_r n m); simpl castm.
 rewrite spec_extend_tr; auto.
 Qed.

 Let spec_cast_r: forall n m x1,
 [Nn m x1] =
 [Nn (Max.max n m) (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))].
 Proof.
 intros n m x1; case (diff_l n m); simpl castm.
 rewrite spec_extend_tr; auto.
 Qed.

 Ltac unfold_lets :=
  match goal with
   | h : _ |- _ => unfold h; clear h; unfold_lets
   | _ => idtac
  end.

 (** * [same_level]

     Generic binary operator construction, by extending the smaller
     argument to the level of the other.
 *)

 Section SameLevel.

  Variable res: Type.
  Variable P : Z -> Z -> res -> Prop.
  Variable f : forall n, dom_t n -> dom_t n -> res.
  Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).
";

for i = 0 to size do
pr "  Let f%i : w%i -> w%i -> res := f %i." i i i i
done;
pr
"  Let fn n := f (SizePlus (S n)).

  Let Pf' :
   forall n x y u v, u = [mk_t n x] -> v = [mk_t n y] -> P u v (f n x y).
  Proof.
  intros. subst. rewrite 2 spec_mk_t. apply Pf.
  Qed.
";

let ext i j s =
  if j <= i then s else Printf.sprintf "(extend %i %i %s)" i (j-i-1) s
in

pr "  Notation same_level_folded := (fun x y => match x, y with";
for i = 0 to size do
  for j = 0 to size do
    pr "  | N%i wx, N%i wy => f%i %s %s" i j (max i j) (ext i j "wx") (ext j i "wy")
  done;
  pr "  | N%i wx, Nn m wy => fn m (extend_size m %s) wy" i (ext i size "wx")
done;
for i = 0 to size do
  pr "  | Nn n wx, N%i wy => fn n wx (extend_size n %s)" i (ext i size "wy")
done;
pr
"  | Nn n wx, Nn m wy =>
    let mn := Max.max n m in
    let d := diff n m in
     fn mn
       (castm (diff_r n m) (extend_tr wx (snd d)))
       (castm (diff_l n m) (extend_tr wy (fst d)))
  end).
";

pr
"  Definition same_level := Eval lazy beta iota delta
   [ DoubleBase.extend DoubleBase.extend_aux extend zeron ]
  in same_level_folded.

  Lemma spec_same_level_0: forall x y, P [x] [y] (same_level x y).
  Proof.
  change same_level with same_level_folded. unfold_lets.
  destruct x, y; apply Pf'; simpl mk_t; rewrite <- ?spec_extend_size;
  match goal with
   | |- context [ extend ?n ?m _ ] => apply (spec_extend n m)
   | |- context [ castm _ _ ] => apply spec_cast_l || apply spec_cast_r
   | _ => reflexivity
  end.
  Qed.

 End SameLevel.

 Arguments same_level [res] f x y.

 Theorem spec_same_level_dep :
  forall res
   (P : nat -> Z -> Z -> res -> Prop)
   (Pantimon : forall n m z z' r, n <= m -> P m z z' r -> P n z z' r)
   (f : forall n, dom_t n -> dom_t n -> res)
   (Pf: forall n x y, P n (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)),
   forall x y, P (level x) [x] [y] (same_level f x y).
 Proof.
 intros res P Pantimon f Pf.
 set (f' := fun n x y => (n, f n x y)).
 set (P' := fun z z' r => P (fst r) z z' (snd r)).
 assert (FST : forall x y, level x <= fst (same_level f' x y))
  by (destruct x, y; simpl; omega with * ).
 assert (SND : forall x y, same_level f x y = snd (same_level f' x y))
  by (destruct x, y; reflexivity).
 intros. eapply Pantimon; [eapply FST|].
 rewrite SND. eapply (@spec_same_level_0 _ P' f'); eauto.
 Qed.

 (** * [iter]

     Generic binary operator construction, by splitting the larger
     argument in blocks and applying the smaller argument to them.
 *)

 Section Iter.

  Variable res: Type.
  Variable P: Z -> Z -> res -> Prop.

  Variable f : forall n, dom_t n -> dom_t n -> res.
  Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).

  Variable fd : forall n m, dom_t n -> word (dom_t n) (S m) -> res.
  Variable fg : forall n m, word (dom_t n) (S m) -> dom_t n -> res.
  Variable Pfd : forall n m x y, P (ZnZ.to_Z x) (eval n (S m) y) (fd n m x y).
  Variable Pfg : forall n m x y, P (eval n (S m) x) (ZnZ.to_Z y) (fg n m x y).

  Variable fnm: forall n m, word (dom_t Size) (S n) -> word (dom_t Size) (S m) -> res.
  Variable Pfnm: forall n m x y, P [Nn n x] [Nn m y] (fnm n m x y).

  Let Pf' :
   forall n x y u v, u = [mk_t n x] -> v = [mk_t n y] -> P u v (f n x y).
  Proof.
  intros. subst. rewrite 2 spec_mk_t. apply Pf.
  Qed.

  Let Pfd' : forall n m x y u v, u = [mk_t n x] -> v = eval n (S m) y ->
   P u v (fd n m x y).
  Proof.
  intros. subst. rewrite spec_mk_t. apply Pfd.
  Qed.

  Let Pfg' : forall n m x y u v, u = eval n (S m) x -> v = [mk_t n y] ->
   P u v (fg n m x y).
  Proof.
  intros. subst. rewrite spec_mk_t. apply Pfg.
  Qed.
";

for i = 0 to size do
pr "  Let f%i := f %i." i i
done;

for i = 0 to size do
pr "  Let f%in := fd %i." i i;
pr "  Let fn%i := fg %i." i i;
done;

pr "  Notation iter_folded := (fun x y => match x, y with";
for i = 0 to size do
  for j = 0 to size do
    pr "  | N%i wx, N%i wy => f%s wx wy" i j
      (if i = j then string_of_int i
       else if i < j then string_of_int i ^ "n " ^ string_of_int (j-i-1)
       else "n" ^ string_of_int j ^ " " ^ string_of_int (i-j-1))
  done;
  pr "  | N%i wx, Nn m wy => f%in m %s wy" i size (ext i size "wx")
done;
for i = 0 to size do
  pr "  | Nn n wx, N%i wy => fn%i n wx %s" i size (ext i size "wy")
done;
pr
"  | Nn n wx, Nn m wy => fnm n m wx wy
  end).
";

pr
"  Definition iter := Eval lazy beta iota delta
   [extend DoubleBase.extend DoubleBase.extend_aux zeron]
   in iter_folded.

  Lemma spec_iter: forall x y, P [x] [y] (iter x y).
  Proof.
  change iter with iter_folded; unfold_lets.
  destruct x; destruct y; apply Pf' || apply Pfd' || apply Pfg' || apply Pfnm;
  simpl mk_t;
  match goal with
   | |- ?x = ?x => reflexivity
   | |- [Nn _ _] = _ => apply spec_eval_size
   | |- context [extend ?n ?m _] => apply (spec_extend n m)
   | _ => idtac
  end;
  unfold to_Z; rewrite <- spec_plus_t'; simpl dom_op; reflexivity.
  Qed.

  End Iter.
";

pr
"  Definition switch
  (P:nat->Type)%s
  (fn:forall n, P n) n :=
  match n return P n with"
  (iter_str_gen size (fun i -> Printf.sprintf "(f%i:P %i)" i i));
for i = 0 to size do pr "   | %i => f%i" i i done;
pr
"   | n => fn n
  end.
";

pr
"  Lemma spec_switch : forall P (f:forall n, P n) n,
   switch P %sf n = f n.
  Proof.
  repeat (destruct n; try reflexivity).
  Qed.
" (iter_str_gen size (fun i -> Printf.sprintf "(f %i) " i));

pr
"  (** * [iter_sym]

    A variant of [iter] for symmetric functions, or pseudo-symmetric
    functions (when f y x can be deduced from f x y).
  *)

  Section IterSym.

  Variable res: Type.
  Variable P: Z -> Z -> res -> Prop.

  Variable f : forall n, dom_t n -> dom_t n -> res.
  Variable Pf : forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y).

  Variable fg : forall n m, word (dom_t n) (S m) -> dom_t n -> res.
  Variable Pfg : forall n m x y, P (eval n (S m) x) (ZnZ.to_Z y) (fg n m x y).

  Variable fnm: forall n m, word (dom_t Size) (S n) -> word (dom_t Size) (S m) -> res.
  Variable Pfnm: forall n m x y, P [Nn n x] [Nn m y] (fnm n m x y).

  Variable opp: res -> res.
  Variable Popp : forall u v r, P u v r -> P v u (opp r).
";

for i = 0 to size do
pr "  Let f%i := f %i." i i
done;

for i = 0 to size do
pr "  Let fn%i := fg %i." i i;
done;

pr "  Let f' := switch _ %s f." (iter_name 0 size "f" "");
pr "  Let fg' := switch _ %s fg." (iter_name 0 size "fn" "");

pr
"  Local Notation iter_sym_folded :=
   (iter res f' (fun n m x y => opp (fg' n m y x)) fg' fnm).

  Definition iter_sym :=
   Eval lazy beta zeta iota delta [iter f' fg' switch] in iter_sym_folded.

  Lemma spec_iter_sym: forall x y, P [x] [y] (iter_sym x y).
  Proof.
  intros. change iter_sym with iter_sym_folded. apply spec_iter; clear x y.
  unfold_lets.
  intros. rewrite spec_switch. auto.
  intros. apply Popp. unfold_lets. rewrite spec_switch; auto.
  intros. unfold_lets. rewrite spec_switch; auto.
  auto.
  Qed.

  End IterSym.

 (** * Reduction

     [reduce] can be used instead of [mk_t], it will choose the
     lowest possible level. NB: We only search and remove leftmost
     W0's via ZnZ.eq0, any non-W0 block ends the process, even
     if its value is 0.
 *)

 (** First, a direct version ... *)

 Fixpoint red_t n : dom_t n -> t :=
  match n return dom_t n -> t with
   | O => N0
   | S n => fun x =>
     let x' := pred_t n x in
     reduce_n1 _ _ (N0 zero0) ZnZ.eq0 (red_t n) (mk_t_S n) x'
  end.

 Lemma spec_red_t : forall n x, [red_t n x] = [mk_t n x].
 Proof.
 induction n.
 reflexivity.
 intros.
 simpl red_t. unfold reduce_n1.
 rewrite <- (succ_pred_t n x) at 2.
 remember (pred_t n x) as x'.
 rewrite spec_mk_t, spec_succ_t.
 destruct x' as [ | xh xl]. simpl. apply ZnZ.spec_0.
 generalize (ZnZ.spec_eq0 xh); case ZnZ.eq0; intros H.
 rewrite IHn, spec_mk_t. simpl. rewrite H; auto.
 apply spec_mk_t_S.
 Qed.

 (** ... then a specialized one *)
";

for i = 0 to size do
pr " Definition eq0%i := @ZnZ.eq0 _ w%i_op." i i;
done;

pr "
 Definition reduce_0 := N0.";
for i = 1 to size do
  pr " Definition reduce_%i :=" i;
  pr "  Eval lazy beta iota delta [reduce_n1] in";
  pr "   reduce_n1 _ _ (N0 zero0) eq0%i reduce_%i N%i." (i-1) (i-1) i
done;

  pr " Definition reduce_%i :=" (size+1);
  pr "  Eval lazy beta iota delta [reduce_n1] in";
  pr "   reduce_n1 _ _ (N0 zero0) eq0%i reduce_%i (Nn 0)." size size;

  pr " Definition reduce_n n :=";
  pr "  Eval lazy beta iota delta [reduce_n] in";
  pr "   reduce_n _ _ (N0 zero0) reduce_%i Nn n." (size + 1);
  pr "";

pr " Definition reduce n : dom_t n -> t :=";
pr "  match n with";
for i = 0 to size do
pr "   | %i => reduce_%i" i i;
done;
pr "   | %s(S n) => reduce_n n" (if size=0 then "" else "SizePlus ");
pr "  end.";
pr "";

pr " Ltac unfold_red := unfold reduce, %s." (iter_name 1 size "reduce_" ",");
pr "";
for i = 0 to size do
pr " Declare Equivalent Keys reduce reduce_%i." i;
done;
pr " Declare Equivalent Keys reduce_n reduce_%i." (size + 1);

pr "
 Ltac solve_red :=
 let H := fresh in let G := fresh in
 match goal with
  | |- ?P (S ?n) => assert (H:P n) by solve_red
  | _ => idtac
 end;
 intros n G x; destruct (le_lt_eq_dec _ _ G) as [LT|EQ];
 solve [
  apply (H _ (lt_n_Sm_le _ _ LT)) |
  inversion LT |
  subst; change (reduce 0 x = red_t 0 x); reflexivity |
  specialize (H (pred n)); subst; destruct x;
   [|unfold_red; rewrite H; auto]; reflexivity
 ].

 Lemma reduce_equiv : forall n x, n <= Size -> reduce n x = red_t n x.
 Proof.
 set (P N := forall n, n <= N -> forall x, reduce n x = red_t n x).
 intros n x H. revert n H x. change (P Size). solve_red.
 Qed.

 Lemma spec_reduce_n : forall n x, [reduce_n n x] = [Nn n x].
 Proof.
 assert (H : forall x, reduce_%i x = red_t (SizePlus 1) x).
  destruct x; [|unfold reduce_%i; rewrite (reduce_equiv Size)]; auto.
 induction n.
   intros. rewrite H. apply spec_red_t.
 destruct x as [|xh xl].
 simpl. rewrite make_op_S. exact ZnZ.spec_0.
 fold word in *.
 destruct xh; auto.
 simpl reduce_n.
 rewrite IHn.
 rewrite spec_extend_WW; auto.
 Qed.
" (size+1) (size+1);

pr
" Lemma spec_reduce : forall n x, [reduce n x] = ZnZ.to_Z x.
 Proof.
 do_size (destruct n;
       [intros; rewrite reduce_equiv;[apply spec_red_t|auto with arith]|]).
 apply spec_reduce_n.
 Qed.

End Make.
";