summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/NMake.v
blob: 98949736cbd2e24032a7e36bc56e1e35ade47e18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(** * NMake *)

(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)

(** NB: This file contain the part which is independent from the underlying
    representation. The representation-dependent (and macro-generated) part
    is now in [NMake_gen]. *)

Require Import Bool BigNumPrelude ZArith Nnat Ndigits CyclicAxioms DoubleType
  Nbasic Wf_nat StreamMemo NSig NMake_gen.

Module Make (W0:CyclicType) <: NType.

 (** Let's include the macro-generated part. Even if we can't functorize
     things (due to Eval red_t below), the rest of the module only uses
     elements mentionned in interface [NAbstract]. *)

 Include NMake_gen.Make W0.

 Open Scope Z_scope.

 Local Notation "[ x ]" := (to_Z x).

 Definition eq (x y : t) := [x] = [y].

 Declare Reduction red_t :=
  lazy beta iota delta
   [iter_t reduce same_level mk_t mk_t_S succ_t dom_t dom_op].

 Ltac red_t :=
  match goal with |- ?u => let v := (eval red_t in u) in change v end.

 (** * Generic results *)

 Tactic Notation "destr_t" constr(x) "as" simple_intropattern(pat) :=
  destruct (destr_t x) as pat; cbv zeta;
  rewrite ?iter_mk_t, ?spec_mk_t, ?spec_reduce.

 Lemma spec_same_level : forall A (P:Z->Z->A->Prop)
  (f : forall n, dom_t n -> dom_t n -> A),
  (forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)) ->
  forall x y, P [x] [y] (same_level f x y).
 Proof.
 intros. apply spec_same_level_dep with (P:=fun _ => P); auto.
 Qed.

 Theorem spec_pos: forall x, 0 <= [x].
 Proof.
 intros x. destr_t x as (n,x). now case (ZnZ.spec_to_Z x).
 Qed.

 Lemma digits_dom_op_incr : forall n m, (n<=m)%nat ->
  (ZnZ.digits (dom_op n) <= ZnZ.digits (dom_op m))%positive.
 Proof.
 intros.
 change (Zpos (ZnZ.digits (dom_op n)) <= Zpos (ZnZ.digits (dom_op m))).
 rewrite !digits_dom_op, !Pshiftl_nat_Zpower.
 apply Z.mul_le_mono_nonneg_l; auto with zarith.
 apply Z.pow_le_mono_r; auto with zarith.
 Qed.

 Definition to_N (x : t) := Z.to_N (to_Z x).

 (** * Zero, One *)

 Definition zero := mk_t O ZnZ.zero.
 Definition one := mk_t O ZnZ.one.

 Theorem spec_0: [zero] = 0.
 Proof.
 unfold zero. rewrite spec_mk_t. exact ZnZ.spec_0.
 Qed.

 Theorem spec_1: [one] = 1.
 Proof.
 unfold one. rewrite spec_mk_t. exact ZnZ.spec_1.
 Qed.

 (** * Successor *)

 (** NB: it is crucial here and for the rest of this file to preserve
     the let-in's. They allow to pre-compute once and for all the
     field access to Z/nZ initial structures (when n=0..6). *)

 Local Notation succn := (fun n =>
  let op := dom_op n in
  let succ_c := ZnZ.succ_c in
  let one := ZnZ.one in
  fun x => match succ_c x with
   | C0 r => mk_t n r
   | C1 r => mk_t_S n (WW one r)
  end).

 Definition succ : t -> t := Eval red_t in iter_t succn.

 Lemma succ_fold : succ = iter_t succn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_succ: forall n, [succ n] = [n] + 1.
 Proof.
  intros x. rewrite succ_fold. destr_t x as (n,x).
  generalize (ZnZ.spec_succ_c x); case ZnZ.succ_c.
  intros. rewrite spec_mk_t. assumption.
  intros. unfold interp_carry in *.
  rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_1. assumption.
 Qed.

 (** Two *)

 (** Not really pretty, but since W0 might be Z/2Z, we're not sure
     there's a proper 2 there. *)

 Definition two := succ one.

 Lemma spec_2 : [two] = 2.
 Proof.
  unfold two. now rewrite spec_succ, spec_1.
 Qed.

 (** * Addition *)

 Local Notation addn := (fun n =>
  let op := dom_op n in
  let add_c := ZnZ.add_c in
  let one := ZnZ.one in
  fun x y =>match add_c x y with
  | C0 r => mk_t n r
  | C1 r => mk_t_S n (WW one r)
  end).

 Definition add : t -> t -> t := Eval red_t in same_level addn.

 Lemma add_fold : add = same_level addn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_add: forall x y, [add x y] = [x] + [y].
 Proof.
  intros x y. rewrite add_fold. apply spec_same_level; clear x y.
  intros n x y. cbv beta iota zeta.
  generalize (ZnZ.spec_add_c x y); case ZnZ.add_c; intros z H.
  rewrite spec_mk_t. assumption.
  rewrite spec_mk_t_S. unfold interp_carry in H.
  simpl. rewrite ZnZ.spec_1. assumption.
 Qed.

 (** * Predecessor *)

 Local Notation predn := (fun n =>
  let pred_c := ZnZ.pred_c in
  fun x => match pred_c x with
   | C0 r => reduce n r
   | C1 _ => zero
  end).

 Definition pred : t -> t := Eval red_t in iter_t predn.

 Lemma pred_fold : pred = iter_t predn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1.
 Proof.
  intros x. rewrite pred_fold. destr_t x as (n,x). intros H.
  generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'.
  rewrite spec_reduce. assumption.
  exfalso. unfold interp_carry in *.
  generalize (ZnZ.spec_to_Z x) (ZnZ.spec_to_Z y); auto with zarith.
 Qed.

 Theorem spec_pred0 : forall x, [x] = 0 -> [pred x] = 0.
 Proof.
  intros x. rewrite pred_fold. destr_t x as (n,x). intros H.
  generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'.
  rewrite spec_reduce.
  unfold interp_carry in H'.
  generalize (ZnZ.spec_to_Z y); auto with zarith.
  exact spec_0.
 Qed.

 Lemma spec_pred x : [pred x] = Z.max 0 ([x]-1).
 Proof.
 rewrite Z.max_comm.
 destruct (Z.max_spec ([x]-1) 0) as [(H,->)|(H,->)].
 - apply spec_pred0; generalize (spec_pos x); auto with zarith.
 - apply spec_pred_pos; auto with zarith.
 Qed.

 (** * Subtraction *)

 Local Notation subn := (fun n =>
  let sub_c := ZnZ.sub_c in
  fun x y => match sub_c x y with
  | C0 r => reduce n r
  | C1 r => zero
  end).

 Definition sub : t -> t -> t := Eval red_t in same_level subn.

 Lemma sub_fold : sub = same_level subn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y].
 Proof.
  intros x y. rewrite sub_fold. apply spec_same_level. clear x y.
  intros n x y. simpl.
  generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE.
  rewrite spec_reduce. assumption.
  unfold interp_carry in H.
  exfalso.
  generalize (ZnZ.spec_to_Z z); auto with zarith.
 Qed.

 Theorem spec_sub0 : forall x y, [x] < [y] -> [sub x y] = 0.
 Proof.
  intros x y. rewrite sub_fold. apply spec_same_level. clear x y.
  intros n x y. simpl.
  generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE.
  rewrite spec_reduce.
  unfold interp_carry in H.
  generalize (ZnZ.spec_to_Z z); auto with zarith.
  exact spec_0.
 Qed.

 Lemma spec_sub : forall x y, [sub x y] = Z.max 0 ([x]-[y]).
 Proof.
 intros. destruct (Z.le_gt_cases [y] [x]).
 rewrite Z.max_r; auto with zarith. apply spec_sub_pos; auto.
 rewrite Z.max_l; auto with zarith. apply spec_sub0; auto.
 Qed.

 (** * Comparison *)

 Definition comparen_m n :
  forall m, word (dom_t n) (S m) -> dom_t n -> comparison :=
  let op := dom_op n in
  let zero := ZnZ.zero (Ops:=op) in
  let compare := ZnZ.compare (Ops:=op) in
  let compare0 := compare zero in
  fun m => compare_mn_1 (dom_t n) (dom_t n) zero compare compare0 compare (S m).

 Let spec_comparen_m:
  forall n m (x : word (dom_t n) (S m)) (y : dom_t n),
   comparen_m n m x y = Z.compare (eval n (S m) x) (ZnZ.to_Z y).
 Proof.
  intros n m x y.
  unfold comparen_m, eval.
  rewrite nmake_double.
  apply spec_compare_mn_1.
  exact ZnZ.spec_0.
  intros. apply ZnZ.spec_compare.
  exact ZnZ.spec_to_Z.
  exact ZnZ.spec_compare.
  exact ZnZ.spec_compare.
  exact ZnZ.spec_to_Z.
 Qed.

 Definition comparenm n m wx wy :=
    let mn := Max.max n m in
    let d := diff n m in
    let op := make_op mn in
    ZnZ.compare
       (castm (diff_r n m) (extend_tr wx (snd d)))
       (castm (diff_l n m) (extend_tr wy (fst d))).

 Local Notation compare_folded :=
   (iter_sym _
      (fun n => ZnZ.compare (Ops:=dom_op n))
      comparen_m
      comparenm
      CompOpp).

 Definition compare : t -> t -> comparison :=
  Eval lazy beta iota delta [iter_sym dom_op dom_t comparen_m] in
  compare_folded.

 Lemma compare_fold : compare = compare_folded.
 Proof.
 lazy beta iota delta [iter_sym dom_op dom_t comparen_m]. reflexivity.
 Qed.

 Theorem spec_compare : forall x y,
   compare x y = Z.compare [x] [y].
 Proof.
  intros x y. rewrite compare_fold. apply spec_iter_sym; clear x y.
  intros. apply ZnZ.spec_compare.
  intros. cbv beta zeta. apply spec_comparen_m.
  intros n m x y; unfold comparenm.
  rewrite (spec_cast_l n m x), (spec_cast_r n m y).
  unfold to_Z; apply ZnZ.spec_compare.
  intros. subst. now rewrite <- Z.compare_antisym.
 Qed.

 Definition eqb (x y : t) : bool :=
  match compare x y with
  | Eq => true
  | _  => false
  end.

 Theorem spec_eqb x y : eqb x y = Z.eqb [x] [y].
 Proof.
 apply eq_iff_eq_true.
 unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare.
 split; [now destruct Z.compare | now intros ->].
 Qed.

 Definition lt (n m : t) := [n] < [m].
 Definition le (n m : t) := [n] <= [m].

 Definition ltb (x y : t) : bool :=
  match compare x y with
  | Lt => true
  | _  => false
  end.

 Theorem spec_ltb x y : ltb x y = Z.ltb [x] [y].
 Proof.
 apply eq_iff_eq_true.
 rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare.
 split; [now destruct Z.compare | now intros ->].
 Qed.

 Definition leb (x y : t) : bool :=
  match compare x y with
  | Gt => false
  | _  => true
  end.

 Theorem spec_leb x y : leb x y = Z.leb [x] [y].
 Proof.
 apply eq_iff_eq_true.
 rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare.
 destruct Z.compare; split; try easy. now destruct 1.
 Qed.

 Definition min (n m : t) : t := match compare n m with Gt => m | _ => n end.
 Definition max (n m : t) : t := match compare n m with Lt => m | _ => n end.

 Theorem spec_max : forall n m, [max n m] = Z.max [n] [m].
 Proof.
 intros. unfold max, Z.max. rewrite spec_compare; destruct Z.compare; reflexivity.
 Qed.

 Theorem spec_min : forall n m, [min n m] = Z.min [n] [m].
 Proof.
 intros. unfold min, Z.min. rewrite spec_compare; destruct Z.compare; reflexivity.
 Qed.

 (** * Multiplication *)

 Definition wn_mul n : forall m, word (dom_t n) (S m) -> dom_t n -> t :=
  let op := dom_op n in
  let zero := ZnZ.zero in
  let succ := ZnZ.succ (Ops:=op) in
  let add_c := ZnZ.add_c (Ops:=op) in
  let mul_c := ZnZ.mul_c (Ops:=op) in
  let ww := @ZnZ.WW _ op in
  let ow := @ZnZ.OW _ op in
  let eq0 := ZnZ.eq0 in
  let mul_add := @DoubleMul.w_mul_add _ zero succ add_c mul_c in
  let mul_add_n1 := @DoubleMul.double_mul_add_n1 _ zero ww ow mul_add in
  fun m x y =>
   let (w,r) := mul_add_n1 (S m) x y zero in
   if eq0 w then mk_t_w' n m r
   else mk_t_w' n (S m) (WW (extend n m w) r).

 Definition mulnm n m x y :=
    let mn := Max.max n m in
    let d := diff n m in
    let op := make_op mn in
     reduce_n (S mn) (ZnZ.mul_c
       (castm (diff_r n m) (extend_tr x (snd d)))
       (castm (diff_l n m) (extend_tr y (fst d)))).

 Local Notation mul_folded :=
  (iter_sym _
    (fun n => let mul_c := ZnZ.mul_c in
      fun x y => reduce (S n) (succ_t _ (mul_c x y)))
    wn_mul
    mulnm
    (fun x => x)).

 Definition mul : t -> t -> t :=
  Eval lazy beta iota delta
   [iter_sym dom_op dom_t reduce succ_t extend zeron
    wn_mul DoubleMul.w_mul_add mk_t_w'] in
  mul_folded.

 Lemma mul_fold : mul = mul_folded.
 Proof.
  lazy beta iota delta
   [iter_sym dom_op dom_t reduce succ_t extend zeron
    wn_mul  DoubleMul.w_mul_add mk_t_w']. reflexivity.
 Qed.

 Lemma spec_muln:
   forall n (x: word _ (S n)) y,
     [Nn (S n) (ZnZ.mul_c (Ops:=make_op n) x y)] = [Nn n x] * [Nn n y].
 Proof.
    intros n x y; unfold to_Z.
    rewrite <- ZnZ.spec_mul_c.
    rewrite make_op_S.
    case ZnZ.mul_c; auto.
 Qed.

 Lemma spec_mul_add_n1: forall n m x y z,
  let (q,r) := DoubleMul.double_mul_add_n1 ZnZ.zero ZnZ.WW ZnZ.OW
          (DoubleMul.w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c)
          (S m) x y z in
  ZnZ.to_Z q * (base (ZnZ.digits (nmake_op _ (dom_op n) (S m))))
   + eval n (S m) r =
  eval n (S m) x * ZnZ.to_Z y + ZnZ.to_Z z.
 Proof.
 intros n m x y z.
 rewrite digits_nmake.
 unfold eval. rewrite nmake_double.
 apply DoubleMul.spec_double_mul_add_n1.
 apply ZnZ.spec_0.
 exact ZnZ.spec_WW.
 exact ZnZ.spec_OW.
 apply DoubleCyclic.spec_mul_add.
 Qed.

 Lemma spec_wn_mul : forall n m x y,
   [wn_mul n m x y] = (eval n (S m) x) * ZnZ.to_Z y.
 Proof.
  intros; unfold wn_mul.
  generalize (spec_mul_add_n1 n m x y ZnZ.zero).
  case DoubleMul.double_mul_add_n1; intros q r Hqr.
  rewrite ZnZ.spec_0, Z.add_0_r in Hqr. rewrite <- Hqr.
  generalize (ZnZ.spec_eq0 q); case ZnZ.eq0; intros HH.
  rewrite HH; auto. simpl. apply spec_mk_t_w'.
  clear.
  rewrite spec_mk_t_w'.
  set (m' := S m) in *.
  unfold eval.
  rewrite nmake_WW. f_equal. f_equal.
  rewrite <- spec_mk_t.
  symmetry. apply spec_extend.
 Qed.

 Theorem spec_mul : forall x y, [mul x y] = [x] * [y].
 Proof.
  intros x y. rewrite mul_fold. apply spec_iter_sym; clear x y.
   intros n x y. cbv zeta beta.
    rewrite spec_reduce, spec_succ_t, <- ZnZ.spec_mul_c; auto.
   apply spec_wn_mul.
   intros n m x y; unfold mulnm. rewrite spec_reduce_n.
    rewrite (spec_cast_l n m x), (spec_cast_r n m y).
    apply spec_muln.
   intros. rewrite Z.mul_comm; auto.
 Qed.

 (** * Division by a smaller number *)

 Definition wn_divn1 n :=
  let op := dom_op n in
  let zd := ZnZ.zdigits op in
  let zero := ZnZ.zero in
  let ww := ZnZ.WW in
  let head0 := ZnZ.head0 in
  let add_mul_div := ZnZ.add_mul_div in
  let div21 := ZnZ.div21 in
  let compare := ZnZ.compare in
  let sub := ZnZ.sub in
  let ddivn1 :=
    DoubleDivn1.double_divn1 zd zero ww head0 add_mul_div div21 compare sub in
  fun m x y => let (u,v) := ddivn1 (S m) x y in (mk_t_w' n m u, mk_t n v).

 Definition div_gtnm n m wx wy :=
    let mn := Max.max n m in
    let d := diff n m in
    let op := make_op mn in
    let (q, r):= ZnZ.div_gt
         (castm (diff_r n m) (extend_tr wx (snd d)))
         (castm (diff_l n m) (extend_tr wy (fst d))) in
    (reduce_n mn q, reduce_n mn r).

 Local Notation div_gt_folded :=
   (iter _
     (fun n => let div_gt := ZnZ.div_gt in
       fun x y => let (u,v) := div_gt x y in (reduce n u, reduce n v))
     (fun n =>
       let div_gt := ZnZ.div_gt in
       fun m x y =>
         let y' := DoubleBase.get_low (zeron n) (S m) y in
         let (u,v) := div_gt x y' in (reduce n u, reduce n v))
      wn_divn1
      div_gtnm).

 Definition div_gt :=
  Eval lazy beta iota delta
   [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t] in
  div_gt_folded.

 Lemma div_gt_fold : div_gt = div_gt_folded.
 Proof.
  lazy beta iota delta [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t].
  reflexivity.
 Qed.

 Lemma spec_get_endn: forall n m x y,
  eval n m x  <= [mk_t n y] ->
   [mk_t n (DoubleBase.get_low (zeron n) m x)] = eval n m x.
 Proof.
  intros n m x y H.
  unfold eval. rewrite nmake_double.
  rewrite spec_mk_t in *.
  apply DoubleBase.spec_get_low.
  apply spec_zeron.
  exact ZnZ.spec_to_Z.
  apply Z.le_lt_trans with (ZnZ.to_Z y); auto.
    rewrite <- nmake_double; auto.
  case (ZnZ.spec_to_Z y); auto.
 Qed.

 Definition spec_divn1 n :=
   DoubleDivn1.spec_double_divn1
    (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n)
    ZnZ.WW ZnZ.head0
    ZnZ.add_mul_div ZnZ.div21
    ZnZ.compare ZnZ.sub ZnZ.to_Z
    ZnZ.spec_to_Z
    ZnZ.spec_zdigits
    ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0
    ZnZ.spec_add_mul_div ZnZ.spec_div21
    ZnZ.spec_compare ZnZ.spec_sub.

 Lemma spec_div_gt_aux : forall x y, [x] > [y] -> 0 < [y] ->
   let (q,r) := div_gt x y in
   [x] = [q] * [y] + [r] /\ 0 <= [r] < [y].
 Proof.
  intros x y. rewrite div_gt_fold. apply spec_iter; clear x y.
   intros n x y H1 H2. simpl.
    generalize (ZnZ.spec_div_gt x y H1 H2); case ZnZ.div_gt.
    intros u v. rewrite 2 spec_reduce. auto.
   intros n m x y H1 H2. cbv zeta beta.
    generalize (ZnZ.spec_div_gt x
                (DoubleBase.get_low (zeron n) (S m) y)).
    case ZnZ.div_gt.
    intros u v H3; repeat rewrite spec_reduce.
    generalize (spec_get_endn n (S m) y x). rewrite !spec_mk_t. intros H4.
    rewrite H4 in H3; auto with zarith.
   intros n m x y H1 H2.
    generalize (spec_divn1 n (S m) x y H2).
    unfold wn_divn1; case DoubleDivn1.double_divn1.
    intros u v H3.
    rewrite spec_mk_t_w', spec_mk_t.
    rewrite <- !nmake_double in H3; auto.
   intros n m x y H1 H2; unfold div_gtnm.
    generalize (ZnZ.spec_div_gt
                   (castm (diff_r n m)
                     (extend_tr x (snd (diff n m))))
                   (castm (diff_l n m)
                     (extend_tr y (fst (diff n m))))).
    case ZnZ.div_gt.
    intros xx yy HH.
    repeat rewrite spec_reduce_n.
    rewrite (spec_cast_l n m x), (spec_cast_r n m y).
    unfold to_Z; apply HH.
    rewrite (spec_cast_l n m x) in H1; auto.
    rewrite (spec_cast_r n m y) in H1; auto.
    rewrite (spec_cast_r n m y) in H2; auto.
 Qed.

 Theorem spec_div_gt: forall x y, [x] > [y] -> 0 < [y] ->
  let (q,r) := div_gt x y in
  [q] = [x] / [y] /\ [r] = [x] mod [y].
 Proof.
  intros x y H1 H2; generalize (spec_div_gt_aux x y H1 H2); case div_gt.
  intros q r (H3, H4); split.
  apply (Zdiv_unique [x] [y] [q] [r]); auto.
  rewrite Z.mul_comm; auto.
  apply (Zmod_unique [x] [y] [q] [r]); auto.
  rewrite Z.mul_comm; auto.
 Qed.

 (** * General Division *)

 Definition div_eucl (x y : t) : t * t :=
  if eqb y zero then (zero,zero) else
  match compare x y with
  | Eq => (one, zero)
  | Lt => (zero, x)
  | Gt => div_gt x y
  end.

 Theorem spec_div_eucl: forall x y,
      let (q,r) := div_eucl x y in
      ([q], [r]) = Z.div_eucl [x] [y].
 Proof.
 intros x y. unfold div_eucl.
 rewrite spec_eqb, spec_compare, spec_0.
 case Z.eqb_spec.
 intros ->. rewrite spec_0. destruct [x]; auto.
 intros H'.
 assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
 clear H'.
 case Z.compare_spec; intros Cmp;
   rewrite ?spec_0, ?spec_1; intros; auto with zarith.
 rewrite Cmp; generalize (Z_div_same [y] (Z.lt_gt _ _ H))
                         (Z_mod_same [y] (Z.lt_gt _ _ H));
  unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto.
 assert (LeLt: 0 <= [x] < [y]) by (generalize (spec_pos x); auto).
 generalize (Zdiv_small _ _ LeLt) (Zmod_small _ _ LeLt);
  unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto.
 generalize (spec_div_gt _ _ (Z.lt_gt _ _ Cmp) H); auto.
 unfold Z.div, Z.modulo; case Z.div_eucl; case div_gt.
 intros a b c d (H1, H2); subst; auto.
 Qed.

 Definition div (x y : t) : t := fst (div_eucl x y).

 Theorem spec_div:
   forall x y, [div x y] = [x] / [y].
 Proof.
 intros x y; unfold div; generalize (spec_div_eucl x y);
   case div_eucl; simpl fst.
 intros xx yy; unfold Z.div; case Z.div_eucl; intros qq rr H;
  injection H; auto.
 Qed.

 (** * Modulo by a smaller number *)

 Definition wn_modn1 n :=
  let op := dom_op n in
  let zd := ZnZ.zdigits op in
  let zero := ZnZ.zero in
  let head0 := ZnZ.head0 in
  let add_mul_div := ZnZ.add_mul_div in
  let div21 := ZnZ.div21 in
  let compare := ZnZ.compare in
  let sub := ZnZ.sub in
  let dmodn1 :=
    DoubleDivn1.double_modn1 zd zero head0 add_mul_div div21 compare sub in
  fun m x y => reduce n (dmodn1 (S m) x y).

 Definition mod_gtnm n m wx wy :=
    let mn := Max.max n m in
    let d := diff n m in
    let op := make_op mn in
    reduce_n mn (ZnZ.modulo_gt
         (castm (diff_r n m) (extend_tr wx (snd d)))
         (castm (diff_l n m) (extend_tr wy (fst d)))).

 Local Notation mod_gt_folded :=
   (iter _
      (fun n => let modulo_gt := ZnZ.modulo_gt in
        fun x y => reduce n (modulo_gt x y))
      (fun n => let modulo_gt := ZnZ.modulo_gt in
        fun m x y =>
          reduce n (modulo_gt x (DoubleBase.get_low (zeron n) (S m) y)))
      wn_modn1
      mod_gtnm).

 Definition mod_gt :=
  Eval lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron] in
  mod_gt_folded.

 Lemma mod_gt_fold : mod_gt = mod_gt_folded.
 Proof.
  lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron].
  reflexivity.
 Qed.

 Definition spec_modn1 n :=
   DoubleDivn1.spec_double_modn1
    (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n)
    ZnZ.WW ZnZ.head0
    ZnZ.add_mul_div ZnZ.div21
    ZnZ.compare ZnZ.sub ZnZ.to_Z
    ZnZ.spec_to_Z
    ZnZ.spec_zdigits
    ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0
    ZnZ.spec_add_mul_div ZnZ.spec_div21
    ZnZ.spec_compare ZnZ.spec_sub.

 Theorem spec_mod_gt:
   forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].
 Proof.
 intros x y. rewrite mod_gt_fold. apply spec_iter; clear x y.
 intros n x y H1 H2. simpl. rewrite spec_reduce.
   exact (ZnZ.spec_modulo_gt x y H1 H2).
 intros n m x y H1 H2. cbv zeta beta. rewrite spec_reduce.
  rewrite <- spec_mk_t in H1.
  rewrite <- (spec_get_endn n (S m) y x); auto with zarith.
  rewrite spec_mk_t.
  apply ZnZ.spec_modulo_gt; auto.
  rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H1; auto with zarith.
  rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H2; auto with zarith.
 intros n m x y H1 H2. unfold wn_modn1. rewrite spec_reduce.
  unfold eval; rewrite nmake_double.
  apply (spec_modn1 n); auto.
 intros n m x y H1 H2; unfold mod_gtnm.
  repeat rewrite spec_reduce_n.
  rewrite (spec_cast_l n m x), (spec_cast_r n m y).
  unfold to_Z; apply ZnZ.spec_modulo_gt.
  rewrite (spec_cast_l n m x) in H1; auto.
  rewrite (spec_cast_r n m y) in H1; auto.
  rewrite (spec_cast_r n m y) in H2; auto.
 Qed.

 (** * General Modulo *)

 Definition modulo (x y : t) : t :=
  if eqb y zero then zero else
  match compare x y with
  | Eq => zero
  | Lt => x
  | Gt => mod_gt x y
  end.

 Theorem spec_modulo:
   forall x y, [modulo x y] = [x] mod [y].
 Proof.
 intros x y. unfold modulo.
 rewrite spec_eqb, spec_compare, spec_0.
 case Z.eqb_spec.
 intros ->; rewrite spec_0. destruct [x]; auto.
 intro H'.
 assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith).
 clear H'.
 case Z.compare_spec;
   rewrite ?spec_0, ?spec_1; intros; try split; auto with zarith.
 rewrite H0; symmetry; apply Z_mod_same; auto with zarith.
 symmetry; apply Zmod_small; auto with zarith.
 generalize (spec_pos x); auto with zarith.
 apply spec_mod_gt; auto with zarith.
 Qed.

 (** * Square *)

 Local Notation squaren := (fun n =>
   let square_c := ZnZ.square_c in
   fun x => reduce (S n) (succ_t _ (square_c x))).

 Definition square : t -> t := Eval red_t in iter_t squaren.

 Lemma square_fold : square = iter_t squaren.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_square: forall x, [square x] = [x] * [x].
 Proof.
  intros x. rewrite square_fold. destr_t x as (n,x).
  rewrite spec_succ_t. exact (ZnZ.spec_square_c x).
 Qed.

 (** * Square Root *)

 Local Notation sqrtn := (fun n =>
   let sqrt := ZnZ.sqrt in
   fun x => reduce n (sqrt x)).

 Definition sqrt : t -> t := Eval red_t in iter_t sqrtn.

 Lemma sqrt_fold : sqrt = iter_t sqrtn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_sqrt_aux: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.
 Proof.
  intros x. rewrite sqrt_fold. destr_t x as (n,x). exact (ZnZ.spec_sqrt x).
 Qed.

 Theorem spec_sqrt: forall x, [sqrt x] = Z.sqrt [x].
 Proof.
  intros x.
  symmetry. apply Z.sqrt_unique.
  rewrite <- ! Z.pow_2_r. apply spec_sqrt_aux.
 Qed.

 (** * Power *)

 Fixpoint pow_pos (x:t)(p:positive) : t :=
  match p with
  | xH => x
  | xO p => square (pow_pos x p)
  | xI p => mul (square (pow_pos x p)) x
  end.

 Theorem spec_pow_pos: forall x n, [pow_pos x n] = [x] ^ Zpos n.
 Proof.
 intros x n; generalize x; elim n; clear n x; simpl pow_pos.
 intros; rewrite spec_mul; rewrite spec_square; rewrite H.
 rewrite Pos2Z.inj_xI; rewrite Zpower_exp; auto with zarith.
 rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith.
 rewrite Z.pow_2_r; rewrite Z.pow_1_r; auto.
 intros; rewrite spec_square; rewrite H.
 rewrite Pos2Z.inj_xO; auto with zarith.
 rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith.
 rewrite Z.pow_2_r; auto.
 intros; rewrite Z.pow_1_r; auto.
 Qed.

 Definition pow_N (x:t)(n:N) : t := match n with
  | BinNat.N0 => one
  | BinNat.Npos p => pow_pos x p
 end.

 Theorem spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z.of_N n.
 Proof.
 destruct n; simpl. apply spec_1.
 apply spec_pow_pos.
 Qed.

 Definition pow (x y:t) : t := pow_N x (to_N y).

 Theorem spec_pow : forall x y, [pow x y] = [x] ^ [y].
 Proof.
 intros. unfold pow, to_N.
 now rewrite spec_pow_N, Z2N.id by apply spec_pos.
 Qed.


 (** * digits

     Number of digits in the representation of a numbers
     (including head zero's).
     NB: This function isn't a morphism for setoid [eq].
 *)

 Local Notation digitsn := (fun n =>
   let digits := ZnZ.digits (dom_op n) in
   fun _ => digits).

 Definition digits : t -> positive := Eval red_t in iter_t digitsn.

 Lemma digits_fold : digits = iter_t digitsn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).
 Proof.
 intros x. rewrite digits_fold. destr_t x as (n,x). exact (ZnZ.spec_to_Z x).
 Qed.

 Lemma digits_level : forall x, digits x = ZnZ.digits (dom_op (level x)).
 Proof.
 intros x. rewrite digits_fold. unfold level. destr_t x as (n,x). reflexivity.
 Qed.

 (** * Gcd *)

 Definition gcd_gt_body a b cont :=
  match compare b zero with
  | Gt =>
    let r := mod_gt a b in
    match compare r zero with
    | Gt => cont r (mod_gt b r)
    | _ => b
    end
  | _ => a
  end.

 Theorem Zspec_gcd_gt_body: forall a b cont p,
    [a] > [b] -> [a] < 2 ^ p ->
      (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->
         Zis_gcd  [a1] [b1] [cont a1 b1]) ->
      Zis_gcd [a] [b] [gcd_gt_body a b cont].
 Proof.
 intros a b cont p H2 H3 H4; unfold gcd_gt_body.
 rewrite ! spec_compare, spec_0. case Z.compare_spec.
  intros ->; apply Zis_gcd_0.
 intros HH; absurd (0 <= [b]); auto with zarith.
 case (spec_digits b); auto with zarith.
 intros H5; case Z.compare_spec.
 intros H6; rewrite <- (Z.mul_1_r [b]).
 rewrite (Z_div_mod_eq [a] [b]); auto with zarith.
 rewrite <- spec_mod_gt; auto with zarith.
 rewrite H6; rewrite Z.add_0_r.
 apply Zis_gcd_mult; apply Zis_gcd_1.
 intros; apply False_ind.
 case (spec_digits (mod_gt a b)); auto with zarith.
 intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith.
 apply DoubleDiv.Zis_gcd_mod; auto with zarith.
 rewrite <- spec_mod_gt; auto with zarith.
 assert (F2: [b] > [mod_gt a b]).
   case (Z_mod_lt [a] [b]); auto with zarith.
   repeat rewrite <- spec_mod_gt; auto with zarith.
 assert (F3: [mod_gt a b] > [mod_gt b  (mod_gt a b)]).
   case (Z_mod_lt [b] [mod_gt a b]); auto with zarith.
   rewrite <- spec_mod_gt; auto with zarith.
 repeat rewrite <- spec_mod_gt; auto with zarith.
 apply H4; auto with zarith.
 apply Z.mul_lt_mono_pos_r with 2; auto with zarith.
 apply Z.le_lt_trans with ([b] + [mod_gt a b]); auto with zarith.
 apply Z.le_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith.
 - apply Z.add_le_mono_r.
   rewrite <- (Z.mul_1_l [b]) at 1.
   apply Z.mul_le_mono_nonneg_r; auto with zarith.
   change 1 with (Z.succ 0). apply Z.le_succ_l.
   apply Z.div_str_pos; auto with zarith.
 - rewrite Z.mul_comm; rewrite spec_mod_gt; auto with zarith.
   rewrite <- Z_div_mod_eq; auto with zarith.
   rewrite Z.mul_comm, <- Z.pow_succ_r, Z.sub_1_r, Z.succ_pred; auto.
   apply Z.le_0_sub. change 1 with (Z.succ 0). apply Z.le_succ_l.
   destruct p; simpl in H3; auto with zarith.
 Qed.

 Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) : t :=
  gcd_gt_body a b
    (fun a b =>
       match p with
       | xH => cont a b
       | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b
       | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b
       end).

 Theorem Zspec_gcd_gt_aux: forall p n a b cont,
    [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->
      (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->
            Zis_gcd [a1] [b1] [cont a1 b1]) ->
          Zis_gcd [a] [b] [gcd_gt_aux p cont a b].
 intros p; elim p; clear p.
 intros p Hrec n a b cont H2 H3 H4.
   unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto.
   intros a1 b1 H6 H7.
     apply Hrec with (Zpos p + n); auto.
       replace (Zpos p + (Zpos p + n)) with
         (Zpos (xI p) + n  - 1); auto.
       rewrite Pos2Z.inj_xI; ring.
   intros a2 b2 H9 H10.
     apply Hrec with n; auto.
 intros p Hrec n a b cont H2 H3 H4.
   unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto.
   intros a1 b1 H6 H7.
     apply Hrec with (Zpos p + n - 1); auto.
       replace (Zpos p + (Zpos p + n - 1)) with
         (Zpos (xO p) + n  - 1); auto.
       rewrite Pos2Z.inj_xO; ring.
   intros a2 b2 H9 H10.
     apply Hrec with (n - 1); auto.
       replace (Zpos p + (n - 1)) with
         (Zpos p + n  - 1); auto with zarith.
   intros a3 b3 H12 H13; apply H4; auto with zarith.
    apply Z.lt_le_trans with (1 := H12).
    apply Z.pow_le_mono_r; auto with zarith.
 intros n a b cont H H2 H3.
  simpl gcd_gt_aux.
  apply Zspec_gcd_gt_body with (n + 1); auto with zarith.
  rewrite Z.add_comm; auto.
  intros a1 b1 H5 H6; apply H3; auto.
  replace n with (n + 1 - 1); auto; try ring.
 Qed.

 Definition gcd_cont a b :=
  match compare one b with
  | Eq => one
  | _ => a
  end.

 Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b.

 Theorem spec_gcd_gt: forall a b,
   [a] > [b] -> [gcd_gt a b] = Z.gcd [a] [b].
 Proof.
 intros a b H2.
 case (spec_digits (gcd_gt a b)); intros H3 H4.
 case (spec_digits a); intros H5 H6.
 symmetry; apply Zis_gcd_gcd; auto with zarith.
 unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith.
 intros a1 a2; rewrite Z.pow_0_r.
 case (spec_digits a2); intros H7 H8;
   intros; apply False_ind; auto with zarith.
 Qed.

 Definition gcd (a b : t) : t :=
  match compare a b with
  | Eq => a
  | Lt => gcd_gt b a
  | Gt => gcd_gt a b
  end.

 Theorem spec_gcd: forall a b, [gcd a b] = Z.gcd [a] [b].
 Proof.
 intros a b.
 case (spec_digits a); intros H1 H2.
 case (spec_digits b); intros H3 H4.
 unfold gcd. rewrite spec_compare. case Z.compare_spec.
 intros HH; rewrite HH; symmetry; apply Zis_gcd_gcd; auto.
   apply Zis_gcd_refl.
 intros; transitivity (Z.gcd [b] [a]).
   apply spec_gcd_gt; auto with zarith.
 apply Zis_gcd_gcd; auto with zarith.
 apply Z.gcd_nonneg.
 apply Zis_gcd_sym; apply Zgcd_is_gcd.
 intros; apply spec_gcd_gt; auto with zarith.
 Qed.

 (** * Parity test *)

 Definition even : t -> bool := Eval red_t in
   iter_t (fun n x => ZnZ.is_even x).

 Definition odd x := negb (even x).

 Lemma even_fold : even = iter_t (fun n x => ZnZ.is_even x).
 Proof. red_t; reflexivity. Qed.

 Theorem spec_even_aux: forall x,
   if even x then [x] mod 2 = 0 else [x] mod 2 = 1.
 Proof.
 intros x. rewrite even_fold. destr_t x as (n,x).
 exact (ZnZ.spec_is_even x).
 Qed.

 Theorem spec_even: forall x, even x = Z.even [x].
 Proof.
 intros x. assert (H := spec_even_aux x). symmetry.
 rewrite (Z.div_mod [x] 2); auto with zarith.
 destruct (even x); rewrite H, ?Z.add_0_r.
 rewrite Zeven_bool_iff. apply Zeven_2p.
 apply not_true_is_false. rewrite Zeven_bool_iff.
 apply Zodd_not_Zeven. apply Zodd_2p_plus_1.
 Qed.

 Theorem spec_odd: forall x, odd x = Z.odd [x].
 Proof.
 intros x. unfold odd.
 assert (H := spec_even_aux x). symmetry.
 rewrite (Z.div_mod [x] 2); auto with zarith.
 destruct (even x); rewrite H, ?Z.add_0_r; simpl negb.
 apply not_true_is_false. rewrite Zodd_bool_iff.
 apply Zeven_not_Zodd. apply Zeven_2p.
 apply Zodd_bool_iff. apply Zodd_2p_plus_1.
 Qed.

 (** * Conversion *)

 Definition pheight p :=
   Peano.pred (Pos.to_nat (get_height (ZnZ.digits (dom_op 0)) (plength p))).

 Theorem pheight_correct: forall p,
    Zpos p < 2 ^ (Zpos (ZnZ.digits (dom_op 0)) * 2 ^ (Z.of_nat (pheight p))).
 Proof.
 intros p; unfold pheight.
 rewrite Nat2Z.inj_pred by apply Pos2Nat.is_pos.
 rewrite positive_nat_Z.
 rewrite <- Z.sub_1_r.
 assert (F2:= (get_height_correct (ZnZ.digits (dom_op 0)) (plength p))).
 apply Z.lt_le_trans with (Zpos (Pos.succ p)).
   rewrite Pos2Z.inj_succ; auto with zarith.
  apply Z.le_trans with (1 := plength_pred_correct (Pos.succ p)).
 rewrite Pos.pred_succ.
 apply Z.pow_le_mono_r; auto with zarith.
 Qed.

 Definition of_pos (x:positive) : t  :=
  let n := pheight x in
  reduce n (snd (ZnZ.of_pos x)).

 Theorem spec_of_pos: forall x,
   [of_pos x] = Zpos x.
 Proof.
 intros x; unfold of_pos.
 rewrite spec_reduce.
 simpl.
 apply ZnZ.of_pos_correct.
 unfold base.
 apply Z.lt_le_trans with (1 := pheight_correct x).
 apply Z.pow_le_mono_r; auto with zarith.
 rewrite (digits_dom_op (_ _)), Pshiftl_nat_Zpower. auto with zarith.
 Qed.

 Definition of_N (x:N) : t :=
  match x with
  | BinNat.N0 => zero
  | Npos p => of_pos p
  end.

 Theorem spec_of_N: forall x,
   [of_N x] = Z.of_N x.
 Proof.
 intros x; case x.
  simpl of_N. exact spec_0.
 intros p; exact (spec_of_pos p).
 Qed.

 (** * [head0] and [tail0]

     Number of zero at the beginning and at the end of
     the representation of the number.
     NB: these functions are not morphism for setoid [eq].
 *)

 Local Notation head0n := (fun n =>
   let head0 := ZnZ.head0 in
   fun x => reduce n (head0 x)).

 Definition head0 : t -> t := Eval red_t in iter_t head0n.

 Lemma head0_fold : head0 = iter_t head0n.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_head00: forall x, [x] = 0 -> [head0 x] = Zpos (digits x).
 Proof.
 intros x. rewrite head0_fold, digits_fold. destr_t x as (n,x).
 exact (ZnZ.spec_head00 x).
 Qed.

 Lemma pow2_pos_minus_1 : forall z, 0<z -> 2^(z-1) = 2^z / 2.
 Proof.
  intros. apply Zdiv_unique with 0; auto with zarith.
  change 2 with (2^1) at 2.
  rewrite <- Zpower_exp; auto with zarith.
  rewrite Z.add_0_r. f_equal. auto with zarith.
 Qed.

 Theorem spec_head0: forall x, 0 < [x] ->
   2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).
 Proof.
 intros x. rewrite pow2_pos_minus_1 by (red; auto).
 rewrite head0_fold, digits_fold. destr_t x as (n,x). exact (ZnZ.spec_head0 x).
 Qed.

 Local Notation tail0n := (fun n =>
  let tail0 := ZnZ.tail0 in
  fun x => reduce n (tail0 x)).

 Definition tail0 : t -> t := Eval red_t in iter_t tail0n.

 Lemma tail0_fold : tail0 = iter_t tail0n.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_tail00: forall x, [x] = 0 -> [tail0 x] = Zpos (digits x).
 Proof.
 intros x. rewrite tail0_fold, digits_fold. destr_t x as (n,x).
 exact (ZnZ.spec_tail00 x).
 Qed.

 Theorem spec_tail0: forall x,
   0 < [x] -> exists y, 0 <= y /\ [x] = (2 * y + 1) * 2 ^ [tail0 x].
 Proof.
 intros x. rewrite tail0_fold. destr_t x as (n,x). exact (ZnZ.spec_tail0 x).
 Qed.

 (** * [Ndigits]

     Same as [digits] but encoded using large integers
     NB: this function is not a morphism for setoid [eq].
 *)

 Local Notation Ndigitsn := (fun n =>
  let d := reduce n (ZnZ.zdigits (dom_op n)) in
  fun _ => d).

 Definition Ndigits : t -> t := Eval red_t in iter_t Ndigitsn.

 Lemma Ndigits_fold : Ndigits = iter_t Ndigitsn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).
 Proof.
 intros x. rewrite Ndigits_fold, digits_fold. destr_t x as (n,x).
 apply ZnZ.spec_zdigits.
 Qed.

 (** * Binary logarithm *)

 Local Notation log2n := (fun n =>
  let op := dom_op n in
  let zdigits := ZnZ.zdigits op in
  let head0 := ZnZ.head0 in
  let sub_carry := ZnZ.sub_carry in
  fun x => reduce n (sub_carry zdigits (head0 x))).

 Definition log2 : t -> t := Eval red_t in
   let log2 := iter_t log2n in
   fun x => if eqb x zero then zero else log2 x.

 Lemma log2_fold :
   log2 = fun x => if eqb x zero then zero else iter_t log2n x.
 Proof. red_t; reflexivity. Qed.

 Lemma spec_log2_0 : forall x, [x] = 0 -> [log2 x] = 0.
 Proof.
 intros x H. rewrite log2_fold.
 rewrite spec_eqb, H. rewrite spec_0. simpl. exact spec_0.
 Qed.

 Lemma head0_zdigits : forall n (x : dom_t n),
  0 < ZnZ.to_Z x ->
  ZnZ.to_Z (ZnZ.head0 x) < ZnZ.to_Z (ZnZ.zdigits (dom_op n)).
 Proof.
 intros n x H.
 destruct (ZnZ.spec_head0 x H) as (_,H0).
 intros.
 assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)).
 assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
 unfold base in *.
 rewrite ZnZ.spec_zdigits in H2 |- *.
 set (h := ZnZ.to_Z (ZnZ.head0 x)) in *; clearbody h.
 set (d := ZnZ.digits (dom_op n)) in *; clearbody d.
 destruct (Z_lt_le_dec h (Zpos d)); auto. exfalso.
 assert (1 * 2^Zpos d <= ZnZ.to_Z x * 2^h).
  apply Z.mul_le_mono_nonneg; auto with zarith.
  apply Z.pow_le_mono_r; auto with zarith.
 rewrite Z.mul_comm in H0. auto with zarith.
 Qed.

 Lemma spec_log2_pos : forall x, [x]<>0 ->
   2^[log2 x] <= [x] < 2^([log2 x]+1).
 Proof.
 intros x H. rewrite log2_fold.
 rewrite spec_eqb. rewrite spec_0.
 case Z.eqb_spec.
 auto with zarith.
 clear H.
 destr_t x as (n,x). intros H.
 rewrite ZnZ.spec_sub_carry.
 assert (H0 := ZnZ.spec_to_Z x).
 assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)).
 assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
 assert (H3 := head0_zdigits n x).
 rewrite Zmod_small by auto with zarith.
 rewrite Z.sub_simpl_r.
 rewrite (Z.mul_lt_mono_pos_l (2^(ZnZ.to_Z (ZnZ.head0 x))));
  auto with zarith.
 rewrite (Z.mul_le_mono_pos_l _ _ (2^(ZnZ.to_Z (ZnZ.head0 x))));
  auto with zarith.
 rewrite <- 2 Zpower_exp; auto with zarith.
 rewrite !Z.add_sub_assoc, !Z.add_simpl_l.
 rewrite ZnZ.spec_zdigits.
 rewrite pow2_pos_minus_1 by (red; auto).
 apply ZnZ.spec_head0; auto with zarith.
 Qed.

 Lemma spec_log2 : forall x, [log2 x] = Z.log2 [x].
 Proof.
  intros. destruct (Z_lt_ge_dec 0 [x]).
  symmetry. apply Z.log2_unique. apply spec_pos.
  apply spec_log2_pos. intro EQ; rewrite EQ in *; auto with zarith.
  rewrite spec_log2_0. rewrite Z.log2_nonpos; auto with zarith.
  generalize (spec_pos x); auto with zarith.
 Qed.

 Lemma log2_digits_head0 : forall x, 0 < [x] ->
   [log2 x] = Zpos (digits x) - [head0 x] - 1.
 Proof.
 intros. rewrite log2_fold.
 rewrite spec_eqb. rewrite spec_0.
 case Z.eqb_spec.
 auto with zarith.
 intros _. revert H. rewrite digits_fold, head0_fold. destr_t x as (n,x).
 rewrite ZnZ.spec_sub_carry.
 intros.
 generalize (head0_zdigits n x H).
 generalize (ZnZ.spec_to_Z (ZnZ.head0 x)).
 generalize (ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))).
 rewrite ZnZ.spec_zdigits. intros. apply Zmod_small.
 auto with zarith.
 Qed.

 (** * Right shift *)

 Local Notation shiftrn := (fun n =>
   let op := dom_op n in
   let zdigits := ZnZ.zdigits op in
   let sub_c := ZnZ.sub_c in
   let add_mul_div := ZnZ.add_mul_div in
   let zzero := ZnZ.zero in
   fun x p => match sub_c zdigits p with
   | C0 d => reduce n (add_mul_div d zzero x)
   | C1 _ => zero
   end).

 Definition shiftr : t -> t -> t := Eval red_t in
   same_level shiftrn.

 Lemma shiftr_fold : shiftr = same_level shiftrn.
 Proof. red_t; reflexivity. Qed.

 Lemma div_pow2_bound :forall x y z,
   0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z.
 Proof.
   intros x y z HH HH1 HH2.
   split; auto with zarith.
   apply Z.le_lt_trans with (2 := HH2); auto with zarith.
   apply Zdiv_le_upper_bound; auto with zarith.
   pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.
   apply Z.mul_le_mono_nonneg_l; auto.
   apply Z.pow_le_mono_r; auto with zarith.
   rewrite Z.pow_0_r; ring.
 Qed.

 Theorem spec_shiftr_pow2 : forall x n,
  [shiftr x n] = [x] / 2 ^ [n].
 Proof.
  intros x y. rewrite shiftr_fold. apply spec_same_level. clear x y.
  intros n x p. simpl.
  assert (Hx := ZnZ.spec_to_Z x).
  assert (Hy := ZnZ.spec_to_Z p).
  generalize (ZnZ.spec_sub_c (ZnZ.zdigits (dom_op n)) p).
  case ZnZ.sub_c; intros d H; unfold interp_carry in *; simpl.
  (** Subtraction without underflow : [ p <= digits ] *)
  rewrite spec_reduce.
  rewrite ZnZ.spec_zdigits in H.
  rewrite ZnZ.spec_add_mul_div by auto with zarith.
  rewrite ZnZ.spec_0, Z.mul_0_l, Z.add_0_l.
  rewrite Zmod_small.
  f_equal. f_equal. auto with zarith.
  split. auto with zarith.
  apply div_pow2_bound; auto with zarith.
  (** Subtraction with underflow : [ digits < p ] *)
  rewrite ZnZ.spec_0. symmetry.
  apply Zdiv_small.
  split; auto with zarith.
  apply Z.lt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith.
  unfold base. apply Z.pow_le_mono_r; auto with zarith.
  rewrite ZnZ.spec_zdigits in H.
  generalize (ZnZ.spec_to_Z d); auto with zarith.
 Qed.

 Lemma spec_shiftr: forall x p, [shiftr x p] = Z.shiftr [x] [p].
 Proof.
  intros.
  now rewrite spec_shiftr_pow2, Z.shiftr_div_pow2 by apply spec_pos.
 Qed.

 (** * Left shift *)

 (** First an unsafe version, working correctly only if
     the representation is large enough *)

 Local Notation unsafe_shiftln := (fun n =>
   let op := dom_op n in
   let add_mul_div := ZnZ.add_mul_div in
   let zero := ZnZ.zero in
   fun x p => reduce n (add_mul_div p x zero)).

 Definition unsafe_shiftl : t -> t -> t := Eval red_t in
   same_level unsafe_shiftln.

 Lemma unsafe_shiftl_fold : unsafe_shiftl = same_level unsafe_shiftln.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_unsafe_shiftl_aux : forall x p K,
  0 <= K ->
  [x] < 2^K ->
  [p] + K <= Zpos (digits x) ->
  [unsafe_shiftl x p] = [x] * 2 ^ [p].
 Proof.
 intros x p.
 rewrite unsafe_shiftl_fold. rewrite digits_level.
 apply spec_same_level_dep.
 intros n m z z' r LE H K HK H1 H2. apply (H K); auto.
  transitivity (Zpos (ZnZ.digits (dom_op n))); auto.
  apply digits_dom_op_incr; auto.
 clear x p.
 intros n x p K HK Hx Hp. simpl. rewrite spec_reduce.
 destruct (ZnZ.spec_to_Z x).
 destruct (ZnZ.spec_to_Z p).
 rewrite ZnZ.spec_add_mul_div by (omega with *).
 rewrite ZnZ.spec_0, Zdiv_0_l, Z.add_0_r.
 apply Zmod_small. unfold base.
 split; auto with zarith.
 rewrite Z.mul_comm.
 apply Z.lt_le_trans with (2^(ZnZ.to_Z p + K)).
 rewrite Zpower_exp; auto with zarith.
 apply Z.mul_lt_mono_pos_l; auto with zarith.
 apply Z.pow_le_mono_r; auto with zarith.
 Qed.

 Theorem spec_unsafe_shiftl: forall x p,
  [p] <= [head0 x] -> [unsafe_shiftl x p] = [x] * 2 ^ [p].
 Proof.
 intros.
 destruct (Z.eq_dec [x] 0) as [EQ|NEQ].
 (* [x] = 0 *)
 apply spec_unsafe_shiftl_aux with 0; auto with zarith.
 now rewrite EQ.
 rewrite spec_head00 in *; auto with zarith.
 (* [x] <> 0 *)
 apply spec_unsafe_shiftl_aux with ([log2 x] + 1); auto with zarith.
 generalize (spec_pos (log2 x)); auto with zarith.
 destruct (spec_log2_pos x); auto with zarith.
 rewrite log2_digits_head0; auto with zarith.
 generalize (spec_pos x); auto with zarith.
 Qed.

 (** Then we define a function doubling the size of the representation
     but without changing the value of the number. *)

 Local Notation double_size_n := (fun n =>
  let zero := ZnZ.zero in
  fun x => mk_t_S n (WW zero x)).

 Definition double_size : t -> t := Eval red_t in
   iter_t double_size_n.

 Lemma double_size_fold : double_size = iter_t double_size_n.
 Proof. red_t; reflexivity. Qed.

 Lemma double_size_level : forall x, level (double_size x) = S (level x).
 Proof.
 intros x. rewrite double_size_fold; unfold level at 2. destr_t x as (n,x).
 apply mk_t_S_level.
 Qed.

 Theorem spec_double_size_digits:
   forall x, Zpos (digits (double_size x)) = 2 * (Zpos (digits x)).
 Proof.
 intros x. rewrite ! digits_level, double_size_level.
 rewrite 2 digits_dom_op, 2 Pshiftl_nat_Zpower,
         Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
 ring.
 Qed.

 Theorem spec_double_size: forall x, [double_size x] = [x].
 Proof.
 intros x. rewrite double_size_fold. destr_t x as (n,x).
 rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_0. auto with zarith.
 Qed.

 Theorem spec_double_size_head0:
   forall x, 2 * [head0 x] <= [head0 (double_size x)].
 Proof.
 intros x.
 assert (F1:= spec_pos (head0 x)).
 assert (F2: 0 < Zpos (digits x)).
   red; auto.
 assert (HH := spec_pos x). Z.le_elim HH.
 generalize HH; rewrite <- (spec_double_size x); intros HH1.
 case (spec_head0 x HH); intros _ HH2.
 case (spec_head0 _ HH1).
 rewrite (spec_double_size x); rewrite (spec_double_size_digits x).
 intros HH3 _.
 case (Z.le_gt_cases ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.
 absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.
 apply Z.le_ngt.
 apply Z.mul_le_mono_nonneg_r; auto with zarith.
 apply Z.pow_le_mono_r; auto; auto with zarith.
 assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).
 { apply Z.le_succ_l in HH. change (1 <= [x]) in HH.
   Z.le_elim HH.
   - apply Z.mul_le_mono_pos_r with (2 ^ 1); auto with zarith.
     rewrite <- (fun x y z => Z.pow_add_r x (y - z)); auto with zarith.
     rewrite Z.sub_add.
     apply Z.le_trans with (2 := Z.lt_le_incl _ _ HH2).
     apply Z.mul_le_mono_nonneg_l; auto with zarith.
     rewrite Z.pow_1_r; auto with zarith.
   - apply Z.pow_le_mono_r; auto with zarith.
     case (Z.le_gt_cases (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.
     absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.
     rewrite <- HH; rewrite Z.mul_1_r.
     apply Z.pow_le_mono_r; auto with zarith. }
 rewrite (Z.mul_comm 2).
 rewrite Z.pow_mul_r; auto with zarith.
 rewrite Z.pow_2_r.
 apply Z.lt_le_trans with (2 := HH3).
 rewrite <- Z.mul_assoc.
 replace (2 * Zpos (digits x) - 1) with
   ((Zpos (digits x) - 1) + (Zpos (digits x))).
 rewrite Zpower_exp; auto with zarith.
 apply Zmult_lt_compat2; auto with zarith.
 split; auto with zarith.
 apply Z.mul_pos_pos; auto with zarith.
 rewrite Pos2Z.inj_xO; ring.
 apply Z.lt_le_incl; auto.
 repeat rewrite spec_head00; auto.
 rewrite spec_double_size_digits.
 rewrite Pos2Z.inj_xO; auto with zarith.
 rewrite spec_double_size; auto.
 Qed.

 Theorem spec_double_size_head0_pos:
   forall x, 0 < [head0 (double_size x)].
 Proof.
 intros x.
 assert (F := Pos2Z.is_pos (digits x)).
 assert (F0 := spec_pos (head0 (double_size x))).
 Z.le_elim F0; auto.
 assert (F1 := spec_pos (head0 x)).
 Z.le_elim F1.
  apply Z.lt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.
 assert (F3 := spec_pos x).
 Z.le_elim F3.
 generalize F3; rewrite <- (spec_double_size x); intros F4.
 absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).
 { apply Z.le_ngt.
   apply Z.pow_le_mono_r; auto with zarith.
   rewrite Pos2Z.inj_xO; auto with zarith. }
 case (spec_head0 x F3).
 rewrite <- F1; rewrite Z.pow_0_r; rewrite Z.mul_1_l; intros _ HH.
 apply Z.le_lt_trans with (2 := HH).
 case (spec_head0 _ F4).
 rewrite (spec_double_size x); rewrite (spec_double_size_digits x).
 rewrite <- F0; rewrite Z.pow_0_r; rewrite Z.mul_1_l; auto.
 generalize F1; rewrite (spec_head00 _ (eq_sym F3)); auto with zarith.
 Qed.

 (** Finally we iterate [double_size] enough before [unsafe_shiftl]
     in order to get a fully correct [shiftl]. *)

 Definition shiftl_aux_body cont x n :=
   match compare n (head0 x) with
      Gt => cont (double_size x) n
   |  _ => unsafe_shiftl x n
   end.

 Theorem spec_shiftl_aux_body: forall n x p cont,
       2^ Zpos p  <=  [head0 x]  ->
      (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->
         [cont x n] = [x] * 2 ^ [n]) ->
      [shiftl_aux_body cont x n] = [x] * 2 ^ [n].
 Proof.
 intros n x p cont H1 H2; unfold shiftl_aux_body.
 rewrite spec_compare; case Z.compare_spec; intros H.
  apply spec_unsafe_shiftl; auto with zarith.
  apply spec_unsafe_shiftl; auto with zarith.
 rewrite H2.
 rewrite spec_double_size; auto.
 rewrite Z.add_comm; rewrite Zpower_exp; auto with zarith.
 apply Z.le_trans with (2 := spec_double_size_head0 x).
 rewrite Z.pow_1_r; apply Z.mul_le_mono_nonneg_l; auto with zarith.
 Qed.

 Fixpoint shiftl_aux p cont x n :=
   shiftl_aux_body
       (fun x n => match p with
        | xH => cont x n
        | xO p => shiftl_aux p (shiftl_aux p cont) x n
        | xI p => shiftl_aux p (shiftl_aux p cont) x n
        end) x n.

 Theorem spec_shiftl_aux: forall p q x n cont,
    2 ^ (Zpos q) <= [head0 x] ->
      (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->
         [cont x n] = [x] * 2 ^ [n]) ->
      [shiftl_aux p cont x n] = [x] * 2 ^ [n].
 Proof.
 intros p; elim p; unfold shiftl_aux; fold shiftl_aux; clear p.
 intros p Hrec q x n cont H1 H2.
 apply spec_shiftl_aux_body with (q); auto.
 intros x1 H3; apply Hrec with (q + 1)%positive; auto.
 intros x2 H4; apply Hrec with (p + q + 1)%positive; auto.
 rewrite <- Pos.add_assoc.
 rewrite Pos2Z.inj_add; auto.
 intros x3 H5; apply H2.
 rewrite Pos2Z.inj_xI.
 replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));
   auto.
 rewrite !Pos2Z.inj_add; ring.
 intros p Hrec q n x cont H1 H2.
 apply spec_shiftl_aux_body with (q); auto.
 intros x1 H3; apply Hrec with (q); auto.
 apply Z.le_trans with (2 := H3); auto with zarith.
 apply Z.pow_le_mono_r; auto with zarith.
 intros x2 H4; apply Hrec with (p + q)%positive; auto.
 intros x3 H5; apply H2.
 rewrite (Pos2Z.inj_xO p).
 replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));
   auto.
 rewrite Pos2Z.inj_add; ring.
 intros q n x cont H1 H2.
 apply spec_shiftl_aux_body with (q); auto.
 rewrite Z.add_comm; auto.
 Qed.

 Definition shiftl x n :=
  shiftl_aux_body
   (shiftl_aux_body
    (shiftl_aux (digits n) unsafe_shiftl)) x n.

 Theorem spec_shiftl_pow2 : forall x n,
   [shiftl x n] = [x] * 2 ^ [n].
 Proof.
 intros x n; unfold shiftl, shiftl_aux_body.
 rewrite spec_compare; case Z.compare_spec; intros H.
  apply spec_unsafe_shiftl; auto with zarith.
  apply spec_unsafe_shiftl; auto with zarith.
 rewrite <- (spec_double_size x).
 rewrite spec_compare; case Z.compare_spec; intros H1.
  apply spec_unsafe_shiftl; auto with zarith.
  apply spec_unsafe_shiftl; auto with zarith.
 rewrite <- (spec_double_size (double_size x)).
 apply spec_shiftl_aux with 1%positive.
 apply Z.le_trans with (2 := spec_double_size_head0 (double_size x)).
 replace (2 ^ 1) with (2 * 1).
 apply Z.mul_le_mono_nonneg_l; auto with zarith.
 generalize (spec_double_size_head0_pos x); auto with zarith.
 rewrite Z.pow_1_r; ring.
 intros x1 H2; apply spec_unsafe_shiftl.
 apply Z.le_trans with (2 := H2).
 apply Z.le_trans with (2 ^ Zpos (digits n)); auto with zarith.
 case (spec_digits n); auto with zarith.
 apply Z.pow_le_mono_r; auto with zarith.
 Qed.

 Lemma spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p].
 Proof.
  intros.
  now rewrite spec_shiftl_pow2, Z.shiftl_mul_pow2 by apply spec_pos.
 Qed.

 (** Other bitwise operations *)

 Definition testbit x n := odd (shiftr x n).

 Lemma spec_testbit: forall x p, testbit x p = Z.testbit [x] [p].
 Proof.
  intros. unfold testbit. symmetry.
  rewrite spec_odd, spec_shiftr. apply Z.testbit_odd.
 Qed.

 Definition div2 x := shiftr x one.

 Lemma spec_div2: forall x, [div2 x] = Z.div2 [x].
 Proof.
  intros. unfold div2. symmetry.
  rewrite spec_shiftr, spec_1. apply Z.div2_spec.
 Qed.

 Local Notation lorn := (fun n =>
  let op := dom_op n in
  let lor := ZnZ.lor in
  fun x y => reduce n (lor x y)).

 Definition lor : t -> t -> t := Eval red_t in same_level lorn.

 Lemma lor_fold : lor = same_level lorn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_lor x y : [lor x y] = Z.lor [x] [y].
 Proof.
  rewrite lor_fold. apply spec_same_level; clear x y.
  intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lor.
 Qed.

 Local Notation landn := (fun n =>
  let op := dom_op n in
  let land := ZnZ.land in
  fun x y => reduce n (land x y)).

 Definition land : t -> t -> t := Eval red_t in same_level landn.

 Lemma land_fold : land = same_level landn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_land x y : [land x y] = Z.land [x] [y].
 Proof.
  rewrite land_fold. apply spec_same_level; clear x y.
  intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_land.
 Qed.

 Local Notation lxorn := (fun n =>
  let op := dom_op n in
  let lxor := ZnZ.lxor in
  fun x y => reduce n (lxor x y)).

 Definition lxor : t -> t -> t := Eval red_t in same_level lxorn.

 Lemma lxor_fold : lxor = same_level lxorn.
 Proof. red_t; reflexivity. Qed.

 Theorem spec_lxor x y : [lxor x y] = Z.lxor [x] [y].
 Proof.
  rewrite lxor_fold. apply spec_same_level; clear x y.
  intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lxor.
 Qed.

 Local Notation ldiffn := (fun n =>
  let op := dom_op n in
  let lxor := ZnZ.lxor in
  let land := ZnZ.land in
  let m1 := ZnZ.minus_one in
  fun x y => reduce n (land x (lxor y m1))).

 Definition ldiff : t -> t -> t := Eval red_t in same_level ldiffn.

 Lemma ldiff_fold : ldiff = same_level ldiffn.
 Proof. red_t; reflexivity. Qed.

 Lemma ldiff_alt x y p :
  0 <= x < 2^p -> 0 <= y < 2^p ->
  Z.ldiff x y = Z.land x (Z.lxor y (2^p - 1)).
 Proof.
  intros (Hx,Hx') (Hy,Hy').
  destruct p as [|p|p].
  - simpl in *; replace x with 0; replace y with 0; auto with zarith.
  - rewrite <- Z.shiftl_1_l. change (_ - 1) with (Z.ones (Z.pos p)).
    rewrite <- Z.ldiff_ones_l_low; trivial.
    rewrite !Z.ldiff_land, Z.land_assoc. f_equal.
    rewrite Z.land_ones; try easy.
    symmetry. apply Z.mod_small; now split.
    Z.le_elim Hy.
    + now apply Z.log2_lt_pow2.
    + now subst.
  - simpl in *; omega.
 Qed.

 Theorem spec_ldiff x y : [ldiff x y] = Z.ldiff [x] [y].
 Proof.
  rewrite ldiff_fold. apply spec_same_level; clear x y.
  intros n x y. simpl. rewrite spec_reduce.
  rewrite ZnZ.spec_land, ZnZ.spec_lxor, ZnZ.spec_m1.
  symmetry. apply ldiff_alt; apply ZnZ.spec_to_Z.
 Qed.

End Make.