summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NOrder.v
blob: 90053a736d0c00ca74c8dac39436a5c1ebb9ea3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Export NAdd.

Module NOrderProp (Import N : NAxiomsMiniSig').
Include NAddProp N.

(* Theorems that are true for natural numbers but not for integers *)

Theorem lt_wf_0 : well_founded lt.
Proof.
setoid_replace lt with (fun n m => 0 <= n < m).
apply lt_wf.
intros x y; split.
intro H; split; [apply le_0_l | assumption]. now intros [_ H].
Defined.

(* "le_0_l : forall n : N, 0 <= n" was proved in NBase.v *)

Theorem nlt_0_r : forall n, ~ n < 0.
Proof.
intro n; apply le_ngt. apply le_0_l.
Qed.

Theorem nle_succ_0 : forall n, ~ (S n <= 0).
Proof.
intros n H; apply le_succ_l in H; false_hyp H nlt_0_r.
Qed.

Theorem le_0_r : forall n, n <= 0 <-> n == 0.
Proof.
intros n; split; intro H.
le_elim H; [false_hyp H nlt_0_r | assumption].
now apply eq_le_incl.
Qed.

Theorem lt_0_succ : forall n, 0 < S n.
Proof.
induct n; [apply lt_succ_diag_r | intros n H; now apply lt_lt_succ_r].
Qed.

Theorem neq_0_lt_0 : forall n, n ~= 0 <-> 0 < n.
Proof.
cases n.
split; intro H; [now elim H | intro; now apply lt_irrefl with 0].
intro n; split; intro H; [apply lt_0_succ | apply neq_succ_0].
Qed.

Theorem eq_0_gt_0_cases : forall n, n == 0 \/ 0 < n.
Proof.
cases n.
now left.
intro; right; apply lt_0_succ.
Qed.

Theorem zero_one : forall n, n == 0 \/ n == 1 \/ 1 < n.
Proof.
setoid_rewrite one_succ.
induct n. now left.
cases n. intros; right; now left.
intros n IH. destruct IH as [H | [H | H]].
false_hyp H neq_succ_0.
right; right. rewrite H. apply lt_succ_diag_r.
right; right. now apply lt_lt_succ_r.
Qed.

Theorem lt_1_r : forall n, n < 1 <-> n == 0.
Proof.
setoid_rewrite one_succ.
cases n.
split; intro; [reflexivity | apply lt_succ_diag_r].
intros n. rewrite <- succ_lt_mono.
split; intro H; [false_hyp H nlt_0_r | false_hyp H neq_succ_0].
Qed.

Theorem le_1_r : forall n, n <= 1 <-> n == 0 \/ n == 1.
Proof.
setoid_rewrite one_succ.
cases n.
split; intro; [now left | apply le_succ_diag_r].
intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd.
split; [intro; now right | intros [H | H]; [false_hyp H neq_succ_0 | assumption]].
Qed.

Theorem lt_lt_0 : forall n m, n < m -> 0 < m.
Proof.
intros n m; induct n.
trivial.
intros n IH H. apply IH; now apply lt_succ_l.
Qed.

Theorem lt_1_l' : forall n m p, n < m -> m < p -> 1 < p.
Proof.
intros. apply lt_1_l with m; auto.
apply le_lt_trans with n; auto. now apply le_0_l.
Qed.

(** Elimination principlies for < and <= for relations *)

Section RelElim.

Variable R : relation N.t.
Hypothesis R_wd : Proper (N.eq==>N.eq==>iff) R.

Theorem le_ind_rel :
   (forall m, R 0 m) ->
   (forall n m, n <= m -> R n m -> R (S n) (S m)) ->
     forall n m, n <= m -> R n m.
Proof.
intros Base Step; induct n.
intros; apply Base.
intros n IH m H. elim H using le_ind.
solve_proper.
apply Step; [| apply IH]; now apply eq_le_incl.
intros k H1 H2. apply le_succ_l in H1. apply lt_le_incl in H1. auto.
Qed.

Theorem lt_ind_rel :
   (forall m, R 0 (S m)) ->
   (forall n m, n < m -> R n m -> R (S n) (S m)) ->
   forall n m, n < m -> R n m.
Proof.
intros Base Step; induct n.
intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]].
rewrite H; apply Base.
intros n IH m H. elim H using lt_ind.
solve_proper.
apply Step; [| apply IH]; now apply lt_succ_diag_r.
intros k H1 H2. apply lt_succ_l in H1. auto.
Qed.

End RelElim.

(** Predecessor and order *)

Theorem succ_pred_pos : forall n, 0 < n -> S (P n) == n.
Proof.
intros n H; apply succ_pred; intro H1; rewrite H1 in H.
false_hyp H lt_irrefl.
Qed.

Theorem le_pred_l : forall n, P n <= n.
Proof.
cases n.
rewrite pred_0; now apply eq_le_incl.
intros; rewrite pred_succ;  apply le_succ_diag_r.
Qed.

Theorem lt_pred_l : forall n, n ~= 0 -> P n < n.
Proof.
cases n.
intro H; exfalso; now apply H.
intros; rewrite pred_succ;  apply lt_succ_diag_r.
Qed.

Theorem le_le_pred : forall n m, n <= m -> P n <= m.
Proof.
intros n m H; apply le_trans with n. apply le_pred_l. assumption.
Qed.

Theorem lt_lt_pred : forall n m, n < m -> P n < m.
Proof.
intros n m H; apply le_lt_trans with n. apply le_pred_l. assumption.
Qed.

Theorem lt_le_pred : forall n m, n < m -> n <= P m.
 (* Converse is false for n == m == 0 *)
Proof.
intro n; cases m.
intro H; false_hyp H nlt_0_r.
intros m IH. rewrite pred_succ; now apply lt_succ_r.
Qed.

Theorem lt_pred_le : forall n m, P n < m -> n <= m.
 (* Converse is false for n == m == 0 *)
Proof.
intros n m; cases n.
rewrite pred_0; intro H; now apply lt_le_incl.
intros n IH. rewrite pred_succ in IH. now apply le_succ_l.
Qed.

Theorem lt_pred_lt : forall n m, n < P m -> n < m.
Proof.
intros n m H; apply lt_le_trans with (P m); [assumption | apply le_pred_l].
Qed.

Theorem le_pred_le : forall n m, n <= P m -> n <= m.
Proof.
intros n m H; apply le_trans with (P m); [assumption | apply le_pred_l].
Qed.

Theorem pred_le_mono : forall n m, n <= m -> P n <= P m.
 (* Converse is false for n == 1, m == 0 *)
Proof.
intros n m H; elim H using le_ind_rel.
solve_proper.
intro; rewrite pred_0; apply le_0_l.
intros p q H1 _; now do 2 rewrite pred_succ.
Qed.

Theorem pred_lt_mono : forall n m, n ~= 0 -> (n < m <-> P n < P m).
Proof.
intros n m H1; split; intro H2.
assert (m ~= 0). apply neq_0_lt_0. now apply lt_lt_0 with n.
now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ;
[apply succ_lt_mono | | |].
assert (m ~= 0). apply neq_0_lt_0. apply lt_lt_0 with (P n).
apply lt_le_trans with (P m). assumption. apply le_pred_l.
apply succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
Qed.

Theorem lt_succ_lt_pred : forall n m, S n < m <-> n < P m.
Proof.
intros n m. rewrite pred_lt_mono by apply neq_succ_0. now rewrite pred_succ.
Qed.

Theorem le_succ_le_pred : forall n m, S n <= m -> n <= P m.
 (* Converse is false for n == m == 0 *)
Proof.
intros n m H. apply lt_le_pred. now apply le_succ_l.
Qed.

Theorem lt_pred_lt_succ : forall n m, P n < m -> n < S m.
 (* Converse is false for n == m == 0 *)
Proof.
intros n m H. apply lt_succ_r. now apply lt_pred_le.
Qed.

Theorem le_pred_le_succ : forall n m, P n <= m <-> n <= S m.
Proof.
intros n m; cases n.
rewrite pred_0. split; intro H; apply le_0_l.
intro n. rewrite pred_succ. apply succ_le_mono.
Qed.

End NOrderProp.