1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import NAxioms NSub NZDiv.
(** Properties of Euclidean Division *)
Module Type NDivProp (Import N : NAxiomsSig')(Import NP : NSubProp N).
(** We benefit from what already exists for NZ *)
Module Import Private_NZDiv := Nop <+ NZDivProp N N NP.
Ltac auto' := try rewrite <- neq_0_lt_0; auto using le_0_l.
(** Let's now state again theorems, but without useless hypothesis. *)
Lemma mod_upper_bound : forall a b, b ~= 0 -> a mod b < b.
Proof. intros. apply mod_bound_pos; auto'. Qed.
(** Another formulation of the main equation *)
Lemma mod_eq :
forall a b, b~=0 -> a mod b == a - b*(a/b).
Proof.
intros.
symmetry. apply add_sub_eq_l. symmetry.
now apply div_mod.
Qed.
(** Uniqueness theorems *)
Theorem div_mod_unique :
forall b q1 q2 r1 r2, r1<b -> r2<b ->
b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2.
Proof. intros. apply div_mod_unique with b; auto'. Qed.
Theorem div_unique:
forall a b q r, r<b -> a == b*q + r -> q == a/b.
Proof. intros; apply div_unique with r; auto'. Qed.
Theorem mod_unique:
forall a b q r, r<b -> a == b*q + r -> r == a mod b.
Proof. intros. apply mod_unique with q; auto'. Qed.
Theorem div_unique_exact: forall a b q, b~=0 -> a == b*q -> q == a/b.
Proof. intros. apply div_unique_exact; auto'. Qed.
(** A division by itself returns 1 *)
Lemma div_same : forall a, a~=0 -> a/a == 1.
Proof. intros. apply div_same; auto'. Qed.
Lemma mod_same : forall a, a~=0 -> a mod a == 0.
Proof. intros. apply mod_same; auto'. Qed.
(** A division of a small number by a bigger one yields zero. *)
Theorem div_small: forall a b, a<b -> a/b == 0.
Proof. intros. apply div_small; auto'. Qed.
(** Same situation, in term of modulo: *)
Theorem mod_small: forall a b, a<b -> a mod b == a.
Proof. intros. apply mod_small; auto'. Qed.
(** * Basic values of divisions and modulo. *)
Lemma div_0_l: forall a, a~=0 -> 0/a == 0.
Proof. intros. apply div_0_l; auto'. Qed.
Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0.
Proof. intros. apply mod_0_l; auto'. Qed.
Lemma div_1_r: forall a, a/1 == a.
Proof. intros. apply div_1_r; auto'. Qed.
Lemma mod_1_r: forall a, a mod 1 == 0.
Proof. intros. apply mod_1_r; auto'. Qed.
Lemma div_1_l: forall a, 1<a -> 1/a == 0.
Proof. exact div_1_l. Qed.
Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1.
Proof. exact mod_1_l. Qed.
Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a.
Proof. intros. apply div_mul; auto'. Qed.
Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0.
Proof. intros. apply mod_mul; auto'. Qed.
(** * Order results about mod and div *)
(** A modulo cannot grow beyond its starting point. *)
Theorem mod_le: forall a b, b~=0 -> a mod b <= a.
Proof. intros. apply mod_le; auto'. Qed.
Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b.
Proof. exact div_str_pos. Qed.
Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> a<b).
Proof. intros. apply div_small_iff; auto'. Qed.
Lemma mod_small_iff : forall a b, b~=0 -> (a mod b == a <-> a<b).
Proof. intros. apply mod_small_iff; auto'. Qed.
Lemma div_str_pos_iff : forall a b, b~=0 -> (0<a/b <-> b<=a).
Proof. intros. apply div_str_pos_iff; auto'. Qed.
(** As soon as the divisor is strictly greater than 1,
the division is strictly decreasing. *)
Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a.
Proof. exact div_lt. Qed.
(** [le] is compatible with a positive division. *)
Lemma div_le_mono : forall a b c, c~=0 -> a<=b -> a/c <= b/c.
Proof. intros. apply div_le_mono; auto'. Qed.
Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a.
Proof. intros. apply mul_div_le; auto'. Qed.
Lemma mul_succ_div_gt: forall a b, b~=0 -> a < b*(S (a/b)).
Proof. intros; apply mul_succ_div_gt; auto'. Qed.
(** The previous inequality is exact iff the modulo is zero. *)
Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0).
Proof. intros. apply div_exact; auto'. Qed.
(** Some additionnal inequalities about div. *)
Theorem div_lt_upper_bound:
forall a b q, b~=0 -> a < b*q -> a/b < q.
Proof. intros. apply div_lt_upper_bound; auto'. Qed.
Theorem div_le_upper_bound:
forall a b q, b~=0 -> a <= b*q -> a/b <= q.
Proof. intros; apply div_le_upper_bound; auto'. Qed.
Theorem div_le_lower_bound:
forall a b q, b~=0 -> b*q <= a -> q <= a/b.
Proof. intros; apply div_le_lower_bound; auto'. Qed.
(** A division respects opposite monotonicity for the divisor *)
Lemma div_le_compat_l: forall p q r, 0<q<=r -> p/r <= p/q.
Proof. intros. apply div_le_compat_l. auto'. auto. Qed.
(** * Relations between usual operations and mod and div *)
Lemma mod_add : forall a b c, c~=0 ->
(a + b * c) mod c == a mod c.
Proof. intros. apply mod_add; auto'. Qed.
Lemma div_add : forall a b c, c~=0 ->
(a + b * c) / c == a / c + b.
Proof. intros. apply div_add; auto'. Qed.
Lemma div_add_l: forall a b c, b~=0 ->
(a * b + c) / b == a + c / b.
Proof. intros. apply div_add_l; auto'. Qed.
(** Cancellations. *)
Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 ->
(a*c)/(b*c) == a/b.
Proof. intros. apply div_mul_cancel_r; auto'. Qed.
Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 ->
(c*a)/(c*b) == a/b.
Proof. intros. apply div_mul_cancel_l; auto'. Qed.
Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 ->
(a*c) mod (b*c) == (a mod b) * c.
Proof. intros. apply mul_mod_distr_r; auto'. Qed.
Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 ->
(c*a) mod (c*b) == c * (a mod b).
Proof. intros. apply mul_mod_distr_l; auto'. Qed.
(** Operations modulo. *)
Theorem mod_mod: forall a n, n~=0 ->
(a mod n) mod n == a mod n.
Proof. intros. apply mod_mod; auto'. Qed.
Lemma mul_mod_idemp_l : forall a b n, n~=0 ->
((a mod n)*b) mod n == (a*b) mod n.
Proof. intros. apply mul_mod_idemp_l; auto'. Qed.
Lemma mul_mod_idemp_r : forall a b n, n~=0 ->
(a*(b mod n)) mod n == (a*b) mod n.
Proof. intros. apply mul_mod_idemp_r; auto'. Qed.
Theorem mul_mod: forall a b n, n~=0 ->
(a * b) mod n == ((a mod n) * (b mod n)) mod n.
Proof. intros. apply mul_mod; auto'. Qed.
Lemma add_mod_idemp_l : forall a b n, n~=0 ->
((a mod n)+b) mod n == (a+b) mod n.
Proof. intros. apply add_mod_idemp_l; auto'. Qed.
Lemma add_mod_idemp_r : forall a b n, n~=0 ->
(a+(b mod n)) mod n == (a+b) mod n.
Proof. intros. apply add_mod_idemp_r; auto'. Qed.
Theorem add_mod: forall a b n, n~=0 ->
(a+b) mod n == (a mod n + b mod n) mod n.
Proof. intros. apply add_mod; auto'. Qed.
Lemma div_div : forall a b c, b~=0 -> c~=0 ->
(a/b)/c == a/(b*c).
Proof. intros. apply div_div; auto'. Qed.
Lemma mod_mul_r : forall a b c, b~=0 -> c~=0 ->
a mod (b*c) == a mod b + b*((a/b) mod c).
Proof. intros. apply mod_mul_r; auto'. Qed.
(** A last inequality: *)
Theorem div_mul_le:
forall a b c, b~=0 -> c*(a/b) <= (c*a)/b.
Proof. intros. apply div_mul_le; auto'. Qed.
(** mod is related to divisibility *)
Lemma mod_divides : forall a b, b~=0 ->
(a mod b == 0 <-> exists c, a == b*c).
Proof. intros. apply mod_divides; auto'. Qed.
End NDivProp.
|