summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NBits.v
blob: e1391f599099b69616c23fd63ce833f514bd5681 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Bool NAxioms NSub NPow NDiv NParity NLog.

(** Derived properties of bitwise operations *)

Module Type NBitsProp
 (Import A : NAxiomsSig')
 (Import B : NSubProp A)
 (Import C : NParityProp A B)
 (Import D : NPowProp A B C)
 (Import E : NDivProp A B)
 (Import F : NLog2Prop A B C D).

Include BoolEqualityFacts A.

Ltac order_nz := try apply pow_nonzero; order'.
Hint Rewrite div_0_l mod_0_l div_1_r mod_1_r : nz.

(** Some properties of power and division *)

Lemma pow_sub_r : forall a b c, a~=0 -> c<=b -> a^(b-c) == a^b / a^c.
Proof.
 intros a b c Ha H.
 apply div_unique with 0.
 generalize (pow_nonzero a c Ha) (le_0_l (a^c)); order'.
 nzsimpl. now rewrite <- pow_add_r, add_comm, sub_add.
Qed.

Lemma pow_div_l : forall a b c, b~=0 -> a mod b == 0 ->
 (a/b)^c == a^c / b^c.
Proof.
 intros a b c Hb H.
 apply div_unique with 0.
 generalize (pow_nonzero b c Hb) (le_0_l (b^c)); order'.
 nzsimpl. rewrite <- pow_mul_l. f_equiv. now apply div_exact.
Qed.

(** An injection from bits [true] and [false] to numbers 1 and 0.
    We declare it as a (local) coercion for shorter statements. *)

Definition b2n (b:bool) := if b then 1 else 0.
Local Coercion b2n : bool >-> t.

Instance b2n_proper : Proper (Logic.eq ==> eq) b2n.
Proof. solve_proper. Qed.

Lemma exists_div2 a : exists a' (b:bool), a == 2*a' + b.
Proof.
 elim (Even_or_Odd a); [intros (a',H)| intros (a',H)].
 exists a'. exists false. now nzsimpl.
 exists a'. exists true. now simpl.
Qed.

(** We can compact [testbit_odd_0] [testbit_even_0]
    [testbit_even_succ] [testbit_odd_succ] in only two lemmas. *)

Lemma testbit_0_r a (b:bool) : testbit (2*a+b) 0 = b.
Proof.
 destruct b; simpl; rewrite ?add_0_r.
 apply testbit_odd_0.
 apply testbit_even_0.
Qed.

Lemma testbit_succ_r a (b:bool) n :
 testbit (2*a+b) (succ n) = testbit a n.
Proof.
 destruct b; simpl; rewrite ?add_0_r.
 apply testbit_odd_succ, le_0_l.
 apply testbit_even_succ, le_0_l.
Qed.

(** Alternative caracterisations of [testbit] *)

(** This concise equation could have been taken as specification
   for testbit in the interface, but it would have been hard to
   implement with little initial knowledge about div and mod *)

Lemma testbit_spec' a n : a.[n] == (a / 2^n) mod 2.
Proof.
 revert a. induct n.
 intros a. nzsimpl.
 destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
 rewrite testbit_0_r. apply mod_unique with a'; trivial.
 destruct b; order'.
 intros n IH a.
 destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
 rewrite testbit_succ_r, IH. f_equiv.
 rewrite pow_succ_r', <- div_div by order_nz. f_equiv.
 apply div_unique with b; trivial.
 destruct b; order'.
Qed.

(** This caracterisation that uses only basic operations and
   power was initially taken as specification for testbit.
   We describe [a] as having a low part and a high part, with
   the corresponding bit in the middle. This caracterisation
   is moderatly complex to implement, but also moderately
   usable... *)

Lemma testbit_spec a n :
  exists l h, 0<=l<2^n /\ a == l + (a.[n] + 2*h)*2^n.
Proof.
 exists (a mod 2^n). exists (a / 2^n / 2). split.
 split; [apply le_0_l | apply mod_upper_bound; order_nz].
 rewrite add_comm, mul_comm, (add_comm a.[n]).
 rewrite (div_mod a (2^n)) at 1 by order_nz. do 2 f_equiv.
 rewrite testbit_spec'. apply div_mod. order'.
Qed.

Lemma testbit_true : forall a n,
 a.[n] = true <-> (a / 2^n) mod 2 == 1.
Proof.
 intros a n.
 rewrite <- testbit_spec'; destruct a.[n]; split; simpl; now try order'.
Qed.

Lemma testbit_false : forall a n,
 a.[n] = false <-> (a / 2^n) mod 2 == 0.
Proof.
 intros a n.
 rewrite <- testbit_spec'; destruct a.[n]; split; simpl; now try order'.
Qed.

Lemma testbit_eqb : forall a n,
 a.[n] = eqb ((a / 2^n) mod 2) 1.
Proof.
 intros a n.
 apply eq_true_iff_eq. now rewrite testbit_true, eqb_eq.
Qed.

(** Results about the injection [b2n] *)

Lemma b2n_inj : forall (a0 b0:bool), a0 == b0 -> a0 = b0.
Proof.
 intros [|] [|]; simpl; trivial; order'.
Qed.

Lemma add_b2n_double_div2 : forall (a0:bool) a, (a0+2*a)/2 == a.
Proof.
 intros a0 a. rewrite mul_comm, div_add by order'.
 now rewrite div_small, add_0_l by (destruct a0; order').
Qed.

Lemma add_b2n_double_bit0 : forall (a0:bool) a, (a0+2*a).[0] = a0.
Proof.
 intros a0 a. apply b2n_inj.
 rewrite testbit_spec'. nzsimpl. rewrite mul_comm, mod_add by order'.
 now rewrite mod_small by (destruct a0; order').
Qed.

Lemma b2n_div2 : forall (a0:bool), a0/2 == 0.
Proof.
 intros a0. rewrite <- (add_b2n_double_div2 a0 0). now nzsimpl.
Qed.

Lemma b2n_bit0 : forall (a0:bool), a0.[0] = a0.
Proof.
 intros a0. rewrite <- (add_b2n_double_bit0 a0 0) at 2. now nzsimpl.
Qed.

(** The specification of testbit by low and high parts is complete *)

Lemma testbit_unique : forall a n (a0:bool) l h,
 l<2^n -> a == l + (a0 + 2*h)*2^n -> a.[n] = a0.
Proof.
 intros a n a0 l h Hl EQ.
 apply b2n_inj. rewrite testbit_spec' by trivial.
 symmetry. apply mod_unique with h. destruct a0; simpl; order'.
 symmetry. apply div_unique with l; trivial.
 now rewrite add_comm, (add_comm _ a0), mul_comm.
Qed.

(** All bits of number 0 are 0 *)

Lemma bits_0 : forall n, 0.[n] = false.
Proof.
 intros n. apply testbit_false. nzsimpl; order_nz.
Qed.

(** Various ways to refer to the lowest bit of a number *)

Lemma bit0_odd : forall a, a.[0] = odd a.
Proof.
 intros. symmetry.
 destruct (exists_div2 a) as (a' & b & EQ).
 rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2.
 destruct b; simpl; apply odd_1 || apply odd_0.
Qed.

Lemma bit0_eqb : forall a, a.[0] = eqb (a mod 2) 1.
Proof.
 intros a. rewrite testbit_eqb. now nzsimpl.
Qed.

Lemma bit0_mod : forall a, a.[0] == a mod 2.
Proof.
 intros a. rewrite testbit_spec'. now nzsimpl.
Qed.

(** Hence testing a bit is equivalent to shifting and testing parity *)

Lemma testbit_odd : forall a n, a.[n] = odd (a>>n).
Proof.
 intros. now rewrite <- bit0_odd, shiftr_spec, add_0_l.
Qed.

(** [log2] gives the highest nonzero bit *)

Lemma bit_log2 : forall a, a~=0 -> a.[log2 a] = true.
Proof.
 intros a Ha.
 assert (Ha' : 0 < a) by (generalize (le_0_l a); order).
 destruct (log2_spec_alt a Ha') as (r & EQ & (_,Hr)).
 rewrite EQ at 1.
 rewrite testbit_true, add_comm.
 rewrite <- (mul_1_l (2^log2 a)) at 1.
 rewrite div_add by order_nz.
 rewrite div_small by trivial.
 rewrite add_0_l. apply mod_small. order'.
Qed.

Lemma bits_above_log2 : forall a n, log2 a < n ->
 a.[n] = false.
Proof.
 intros a n H.
 rewrite testbit_false.
 rewrite div_small. nzsimpl; order'.
 apply log2_lt_cancel. rewrite log2_pow2; trivial using le_0_l.
Qed.

(** Hence the number of bits of [a] is [1+log2 a]
    (see [Pos.size_nat] and [Pos.size]).
*)

(** Testing bits after division or multiplication by a power of two *)

Lemma div2_bits : forall a n, (a/2).[n] = a.[S n].
Proof.
 intros. apply eq_true_iff_eq.
 rewrite 2 testbit_true.
 rewrite pow_succ_r by apply le_0_l.
 now rewrite div_div by order_nz.
Qed.

Lemma div_pow2_bits : forall a n m, (a/2^n).[m] = a.[m+n].
Proof.
 intros a n. revert a. induct n.
 intros a m. now nzsimpl.
 intros n IH a m. nzsimpl; try apply le_0_l.
 rewrite <- div_div by order_nz.
 now rewrite IH, div2_bits.
Qed.

Lemma double_bits_succ : forall a n, (2*a).[S n] = a.[n].
Proof.
 intros. rewrite <- div2_bits. now rewrite mul_comm, div_mul by order'.
Qed.

Lemma mul_pow2_bits_add : forall a n m, (a*2^n).[m+n] = a.[m].
Proof.
 intros. rewrite <- div_pow2_bits. now rewrite div_mul by order_nz.
Qed.

Lemma mul_pow2_bits_high : forall a n m, n<=m -> (a*2^n).[m] = a.[m-n].
Proof.
 intros.
 rewrite <- (sub_add n m) at 1 by order'.
 now rewrite mul_pow2_bits_add.
Qed.

Lemma mul_pow2_bits_low : forall a n m, m<n -> (a*2^n).[m] = false.
Proof.
 intros. apply testbit_false.
 rewrite <- (sub_add m n) by order'. rewrite pow_add_r, mul_assoc.
 rewrite div_mul by order_nz.
 rewrite <- (succ_pred (n-m)). rewrite pow_succ_r.
 now rewrite (mul_comm 2), mul_assoc, mod_mul by order'.
 apply lt_le_pred.
 apply sub_gt in H. generalize (le_0_l (n-m)); order.
 now apply sub_gt.
Qed.

(** Selecting the low part of a number can be done by a modulo *)

Lemma mod_pow2_bits_high : forall a n m, n<=m ->
 (a mod 2^n).[m] = false.
Proof.
 intros a n m H.
 destruct (eq_0_gt_0_cases (a mod 2^n)) as [EQ|LT].
 now rewrite EQ, bits_0.
 apply bits_above_log2.
 apply lt_le_trans with n; trivial.
 apply log2_lt_pow2; trivial.
 apply mod_upper_bound; order_nz.
Qed.

Lemma mod_pow2_bits_low : forall a n m, m<n ->
 (a mod 2^n).[m] = a.[m].
Proof.
 intros a n m H.
 rewrite testbit_eqb.
 rewrite <- (mod_add _ (2^(P (n-m))*(a/2^n))) by order'.
 rewrite <- div_add by order_nz.
 rewrite (mul_comm _ 2), mul_assoc, <- pow_succ_r', succ_pred
   by now apply sub_gt.
 rewrite mul_comm, mul_assoc, <- pow_add_r, (add_comm m), sub_add
   by order.
 rewrite add_comm, <- div_mod by order_nz.
 symmetry. apply testbit_eqb.
Qed.

(** We now prove that having the same bits implies equality.
    For that we use a notion of equality over functional
    streams of bits. *)

Definition eqf (f g:t -> bool) := forall n:t, f n = g n.

Instance eqf_equiv : Equivalence eqf.
Proof.
 split; congruence.
Qed.

Local Infix "===" := eqf (at level 70, no associativity).

Instance testbit_eqf : Proper (eq==>eqf) testbit.
Proof.
 intros a a' Ha n. now rewrite Ha.
Qed.

(** Only zero corresponds to the always-false stream. *)

Lemma bits_inj_0 :
 forall a, (forall n, a.[n] = false) -> a == 0.
Proof.
 intros a H. destruct (eq_decidable a 0) as [EQ|NEQ]; trivial.
 apply bit_log2 in NEQ. now rewrite H in NEQ.
Qed.

(** If two numbers produce the same stream of bits, they are equal. *)

Lemma bits_inj : forall a b, testbit a === testbit b -> a == b.
Proof.
 intros a. pattern a.
 apply strong_right_induction with 0;[solve_proper|clear a|apply le_0_l].
 intros a _ IH b H.
 destruct (eq_0_gt_0_cases a) as [EQ|LT].
 rewrite EQ in H |- *. symmetry. apply bits_inj_0.
 intros n. now rewrite <- H, bits_0.
 rewrite (div_mod a 2), (div_mod b 2) by order'.
 f_equiv; [ | now rewrite <- 2 bit0_mod, H].
 f_equiv.
 apply IH; trivial using le_0_l.
 apply div_lt; order'.
 intro n. rewrite 2 div2_bits. apply H.
Qed.

Lemma bits_inj_iff : forall a b, testbit a === testbit b <-> a == b.
Proof.
 split. apply bits_inj. intros EQ; now rewrite EQ.
Qed.

Hint Rewrite lxor_spec lor_spec land_spec ldiff_spec bits_0 : bitwise.

Ltac bitwise := apply bits_inj; intros ?m; autorewrite with bitwise.

(** The streams of bits that correspond to a natural numbers are
  exactly the ones that are always 0 after some point *)

Lemma are_bits : forall (f:t->bool), Proper (eq==>Logic.eq) f ->
 ((exists n, f === testbit n) <->
  (exists k, forall m, k<=m -> f m = false)).
Proof.
 intros f Hf. split.
 intros (a,H).
  exists (S (log2 a)). intros m Hm. apply le_succ_l in Hm.
  rewrite H, bits_above_log2; trivial using lt_succ_diag_r.
 intros (k,Hk).
  revert f Hf Hk. induct k.
  intros f Hf H0.
  exists 0. intros m. rewrite bits_0, H0; trivial. apply le_0_l.
  intros k IH f Hf Hk.
  destruct (IH (fun m => f (S m))) as (n, Hn).
  solve_proper.
  intros m Hm. apply Hk. now rewrite <- succ_le_mono.
  exists (f 0 + 2*n). intros m.
  destruct (zero_or_succ m) as [Hm|(m', Hm)]; rewrite Hm.
  symmetry. apply add_b2n_double_bit0.
  rewrite Hn, <- div2_bits.
  rewrite mul_comm, div_add, b2n_div2, add_0_l; trivial. order'.
Qed.

(** Properties of shifts *)

Lemma shiftr_spec' : forall a n m, (a >> n).[m] = a.[m+n].
Proof.
 intros. apply shiftr_spec. apply le_0_l.
Qed.

Lemma shiftl_spec_high' : forall a n m, n<=m -> (a << n).[m] = a.[m-n].
Proof.
 intros. apply shiftl_spec_high; trivial. apply le_0_l.
Qed.

Lemma shiftr_div_pow2 : forall a n, a >> n == a / 2^n.
Proof.
 intros. bitwise. rewrite shiftr_spec'.
 symmetry. apply div_pow2_bits.
Qed.

Lemma shiftl_mul_pow2 : forall a n, a << n == a * 2^n.
Proof.
 intros. bitwise.
 destruct (le_gt_cases n m) as [H|H].
 now rewrite shiftl_spec_high', mul_pow2_bits_high.
 now rewrite shiftl_spec_low, mul_pow2_bits_low.
Qed.

Lemma shiftl_spec_alt : forall a n m, (a << n).[m+n] = a.[m].
Proof.
 intros. now rewrite shiftl_mul_pow2, mul_pow2_bits_add.
Qed.

Instance shiftr_wd : Proper (eq==>eq==>eq) shiftr.
Proof.
 intros a a' Ha b b' Hb. now rewrite 2 shiftr_div_pow2, Ha, Hb.
Qed.

Instance shiftl_wd : Proper (eq==>eq==>eq) shiftl.
Proof.
 intros a a' Ha b b' Hb. now rewrite 2 shiftl_mul_pow2, Ha, Hb.
Qed.

Lemma shiftl_shiftl : forall a n m,
 (a << n) << m == a << (n+m).
Proof.
 intros. now rewrite !shiftl_mul_pow2, pow_add_r, mul_assoc.
Qed.

Lemma shiftr_shiftr : forall a n m,
 (a >> n) >> m == a >> (n+m).
Proof.
 intros.
 now rewrite !shiftr_div_pow2, pow_add_r, div_div by order_nz.
Qed.

Lemma shiftr_shiftl_l : forall a n m, m<=n ->
 (a << n) >> m == a << (n-m).
Proof.
 intros.
 rewrite shiftr_div_pow2, !shiftl_mul_pow2.
 rewrite <- (sub_add m n) at 1 by trivial.
 now rewrite pow_add_r, mul_assoc, div_mul by order_nz.
Qed.

Lemma shiftr_shiftl_r : forall a n m, n<=m ->
 (a << n) >> m == a >> (m-n).
Proof.
 intros.
 rewrite !shiftr_div_pow2, shiftl_mul_pow2.
 rewrite <- (sub_add n m) at 1 by trivial.
 rewrite pow_add_r, (mul_comm (2^(m-n))).
 now rewrite <- div_div, div_mul by order_nz.
Qed.

(** shifts and constants *)

Lemma shiftl_1_l : forall n, 1 << n == 2^n.
Proof.
 intros. now rewrite shiftl_mul_pow2, mul_1_l.
Qed.

Lemma shiftl_0_r : forall a, a << 0 == a.
Proof.
 intros. rewrite shiftl_mul_pow2. now nzsimpl.
Qed.

Lemma shiftr_0_r : forall a, a >> 0 == a.
Proof.
 intros. rewrite shiftr_div_pow2. now nzsimpl.
Qed.

Lemma shiftl_0_l : forall n, 0 << n == 0.
Proof.
 intros. rewrite shiftl_mul_pow2. now nzsimpl.
Qed.

Lemma shiftr_0_l : forall n, 0 >> n == 0.
Proof.
 intros. rewrite shiftr_div_pow2. nzsimpl; order_nz.
Qed.

Lemma shiftl_eq_0_iff : forall a n, a << n == 0 <-> a == 0.
Proof.
 intros a n. rewrite shiftl_mul_pow2. rewrite eq_mul_0. split.
 intros [H | H]; trivial. contradict H; order_nz.
 intros H. now left.
Qed.

Lemma shiftr_eq_0_iff : forall a n,
 a >> n == 0 <-> a==0 \/ (0<a /\ log2 a < n).
Proof.
 intros a n.
 rewrite shiftr_div_pow2, div_small_iff by order_nz.
 destruct (eq_0_gt_0_cases a) as [EQ|LT].
 rewrite EQ. split. now left. intros _.
  assert (H : 2~=0) by order'.
  generalize (pow_nonzero 2 n H) (le_0_l (2^n)); order.
 rewrite log2_lt_pow2; trivial.
 split. right; split; trivial. intros [H|[_ H]]; now order.
Qed.

Lemma shiftr_eq_0 : forall a n, log2 a < n -> a >> n == 0.
Proof.
 intros a n H. rewrite shiftr_eq_0_iff.
 destruct (eq_0_gt_0_cases a) as [EQ|LT]. now left. right; now split.
Qed.

(** Properties of [div2]. *)

Lemma div2_div : forall a, div2 a == a/2.
Proof.
 intros. rewrite div2_spec, shiftr_div_pow2. now nzsimpl.
Qed.

Instance div2_wd : Proper (eq==>eq) div2.
Proof.
 intros a a' Ha. now rewrite 2 div2_div, Ha.
Qed.

Lemma div2_odd : forall a, a == 2*(div2 a) + odd a.
Proof.
 intros a. rewrite div2_div, <- bit0_odd, bit0_mod.
 apply div_mod. order'.
Qed.

(** Properties of [lxor] and others, directly deduced
    from properties of [xorb] and others. *)

Instance lxor_wd : Proper (eq ==> eq ==> eq) lxor.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Instance land_wd : Proper (eq ==> eq ==> eq) land.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Instance lor_wd : Proper (eq ==> eq ==> eq) lor.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Instance ldiff_wd : Proper (eq ==> eq ==> eq) ldiff.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Lemma lxor_eq : forall a a', lxor a a' == 0 -> a == a'.
Proof.
 intros a a' H. bitwise. apply xorb_eq.
 now rewrite <- lxor_spec, H, bits_0.
Qed.

Lemma lxor_nilpotent : forall a, lxor a a == 0.
Proof.
 intros. bitwise. apply xorb_nilpotent.
Qed.

Lemma lxor_eq_0_iff : forall a a', lxor a a' == 0 <-> a == a'.
Proof.
 split. apply lxor_eq. intros EQ; rewrite EQ; apply lxor_nilpotent.
Qed.

Lemma lxor_0_l : forall a, lxor 0 a == a.
Proof.
 intros. bitwise. apply xorb_false_l.
Qed.

Lemma lxor_0_r : forall a, lxor a 0 == a.
Proof.
 intros. bitwise. apply xorb_false_r.
Qed.

Lemma lxor_comm : forall a b, lxor a b == lxor b a.
Proof.
 intros. bitwise. apply xorb_comm.
Qed.

Lemma lxor_assoc :
 forall a b c, lxor (lxor a b) c == lxor a (lxor b c).
Proof.
 intros. bitwise. apply xorb_assoc.
Qed.

Lemma lor_0_l : forall a, lor 0 a == a.
Proof.
 intros. bitwise. trivial.
Qed.

Lemma lor_0_r : forall a, lor a 0 == a.
Proof.
 intros. bitwise. apply orb_false_r.
Qed.

Lemma lor_comm : forall a b, lor a b == lor b a.
Proof.
 intros. bitwise. apply orb_comm.
Qed.

Lemma lor_assoc :
 forall a b c, lor a (lor b c) == lor (lor a b) c.
Proof.
 intros. bitwise. apply orb_assoc.
Qed.

Lemma lor_diag : forall a, lor a a == a.
Proof.
 intros. bitwise. apply orb_diag.
Qed.

Lemma lor_eq_0_l : forall a b, lor a b == 0 -> a == 0.
Proof.
 intros a b H. bitwise.
 apply (orb_false_iff a.[m] b.[m]).
 now rewrite <- lor_spec, H, bits_0.
Qed.

Lemma lor_eq_0_iff : forall a b, lor a b == 0 <-> a == 0 /\ b == 0.
Proof.
 intros a b. split.
 split. now apply lor_eq_0_l in H.
 rewrite lor_comm in H. now apply lor_eq_0_l in H.
 intros (EQ,EQ'). now rewrite EQ, lor_0_l.
Qed.

Lemma land_0_l : forall a, land 0 a == 0.
Proof.
 intros. bitwise. trivial.
Qed.

Lemma land_0_r : forall a, land a 0 == 0.
Proof.
 intros. bitwise. apply andb_false_r.
Qed.

Lemma land_comm : forall a b, land a b == land b a.
Proof.
 intros. bitwise. apply andb_comm.
Qed.

Lemma land_assoc :
 forall a b c, land a (land b c) == land (land a b) c.
Proof.
 intros. bitwise. apply andb_assoc.
Qed.

Lemma land_diag : forall a, land a a == a.
Proof.
 intros. bitwise. apply andb_diag.
Qed.

Lemma ldiff_0_l : forall a, ldiff 0 a == 0.
Proof.
 intros. bitwise. trivial.
Qed.

Lemma ldiff_0_r : forall a, ldiff a 0 == a.
Proof.
 intros. bitwise. now rewrite andb_true_r.
Qed.

Lemma ldiff_diag : forall a, ldiff a a == 0.
Proof.
 intros. bitwise. apply andb_negb_r.
Qed.

Lemma lor_land_distr_l : forall a b c,
 lor (land a b) c == land (lor a c) (lor b c).
Proof.
 intros. bitwise. apply orb_andb_distrib_l.
Qed.

Lemma lor_land_distr_r : forall a b c,
 lor a (land b c) == land (lor a b) (lor a c).
Proof.
 intros. bitwise. apply orb_andb_distrib_r.
Qed.

Lemma land_lor_distr_l : forall a b c,
 land (lor a b) c == lor (land a c) (land b c).
Proof.
 intros. bitwise. apply andb_orb_distrib_l.
Qed.

Lemma land_lor_distr_r : forall a b c,
 land a (lor b c) == lor (land a b) (land a c).
Proof.
 intros. bitwise. apply andb_orb_distrib_r.
Qed.

Lemma ldiff_ldiff_l : forall a b c,
 ldiff (ldiff a b) c == ldiff a (lor b c).
Proof.
 intros. bitwise. now rewrite negb_orb, andb_assoc.
Qed.

Lemma lor_ldiff_and : forall a b,
 lor (ldiff a b) (land a b) == a.
Proof.
 intros. bitwise.
 now rewrite <- andb_orb_distrib_r, orb_comm, orb_negb_r, andb_true_r.
Qed.

Lemma land_ldiff : forall a b,
 land (ldiff a b) b == 0.
Proof.
 intros. bitwise.
 now rewrite <-andb_assoc, (andb_comm (negb _)), andb_negb_r, andb_false_r.
Qed.

(** Properties of [setbit] and [clearbit] *)

Definition setbit a n := lor a (1<<n).
Definition clearbit a n := ldiff a (1<<n).

Lemma setbit_spec' : forall a n, setbit a n == lor a (2^n).
Proof.
 intros. unfold setbit. now rewrite shiftl_1_l.
Qed.

Lemma clearbit_spec' : forall a n, clearbit a n == ldiff a (2^n).
Proof.
 intros. unfold clearbit. now rewrite shiftl_1_l.
Qed.

Instance setbit_wd : Proper (eq==>eq==>eq) setbit.
Proof. unfold setbit. solve_proper. Qed.

Instance clearbit_wd : Proper (eq==>eq==>eq) clearbit.
Proof. unfold clearbit. solve_proper. Qed.

Lemma pow2_bits_true : forall n, (2^n).[n] = true.
Proof.
 intros. rewrite <- (mul_1_l (2^n)). rewrite <- (add_0_l n) at 2.
 now rewrite mul_pow2_bits_add, bit0_odd, odd_1.
Qed.

Lemma pow2_bits_false : forall n m, n~=m -> (2^n).[m] = false.
Proof.
 intros.
 rewrite <- (mul_1_l (2^n)).
 destruct (le_gt_cases n m).
 rewrite mul_pow2_bits_high; trivial.
 rewrite <- (succ_pred (m-n)) by (apply sub_gt; order).
 now rewrite <- div2_bits, div_small, bits_0 by order'.
 rewrite mul_pow2_bits_low; trivial.
Qed.

Lemma pow2_bits_eqb : forall n m, (2^n).[m] = eqb n m.
Proof.
 intros. apply eq_true_iff_eq. rewrite eqb_eq. split.
 destruct (eq_decidable n m) as [H|H]. trivial.
 now rewrite (pow2_bits_false _ _ H).
 intros EQ. rewrite EQ. apply pow2_bits_true.
Qed.

Lemma setbit_eqb : forall a n m,
 (setbit a n).[m] = eqb n m || a.[m].
Proof.
 intros. now rewrite setbit_spec', lor_spec, pow2_bits_eqb, orb_comm.
Qed.

Lemma setbit_iff : forall a n m,
 (setbit a n).[m] = true <-> n==m \/ a.[m] = true.
Proof.
 intros. now rewrite setbit_eqb, orb_true_iff, eqb_eq.
Qed.

Lemma setbit_eq : forall a n, (setbit a n).[n] = true.
Proof.
 intros. apply setbit_iff. now left.
Qed.

Lemma setbit_neq : forall a n m, n~=m ->
 (setbit a n).[m] = a.[m].
Proof.
 intros a n m H. rewrite setbit_eqb.
 rewrite <- eqb_eq in H. apply not_true_is_false in H. now rewrite H.
Qed.

Lemma clearbit_eqb : forall a n m,
 (clearbit a n).[m] = a.[m] && negb (eqb n m).
Proof.
 intros. now rewrite clearbit_spec', ldiff_spec, pow2_bits_eqb.
Qed.

Lemma clearbit_iff : forall a n m,
 (clearbit a n).[m] = true <-> a.[m] = true /\ n~=m.
Proof.
 intros. rewrite clearbit_eqb, andb_true_iff, <- eqb_eq.
 now rewrite negb_true_iff, not_true_iff_false.
Qed.

Lemma clearbit_eq : forall a n, (clearbit a n).[n] = false.
Proof.
 intros. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)).
 apply andb_false_r.
Qed.

Lemma clearbit_neq : forall a n m, n~=m ->
 (clearbit a n).[m] = a.[m].
Proof.
 intros a n m H. rewrite clearbit_eqb.
 rewrite <- eqb_eq in H. apply not_true_is_false in H. rewrite H.
 apply andb_true_r.
Qed.

(** Shifts of bitwise operations *)

Lemma shiftl_lxor : forall a b n,
 (lxor a b) << n == lxor (a << n) (b << n).
Proof.
 intros. bitwise.
 destruct (le_gt_cases n m).
 now rewrite !shiftl_spec_high', lxor_spec.
 now rewrite !shiftl_spec_low.
Qed.

Lemma shiftr_lxor : forall a b n,
 (lxor a b) >> n == lxor (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec', lxor_spec.
Qed.

Lemma shiftl_land : forall a b n,
 (land a b) << n == land (a << n) (b << n).
Proof.
 intros. bitwise.
 destruct (le_gt_cases n m).
 now rewrite !shiftl_spec_high', land_spec.
 now rewrite !shiftl_spec_low.
Qed.

Lemma shiftr_land : forall a b n,
 (land a b) >> n == land (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec', land_spec.
Qed.

Lemma shiftl_lor : forall a b n,
 (lor a b) << n == lor (a << n) (b << n).
Proof.
 intros. bitwise.
 destruct (le_gt_cases n m).
 now rewrite !shiftl_spec_high', lor_spec.
 now rewrite !shiftl_spec_low.
Qed.

Lemma shiftr_lor : forall a b n,
 (lor a b) >> n == lor (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec', lor_spec.
Qed.

Lemma shiftl_ldiff : forall a b n,
 (ldiff a b) << n == ldiff (a << n) (b << n).
Proof.
 intros. bitwise.
 destruct (le_gt_cases n m).
 now rewrite !shiftl_spec_high', ldiff_spec.
 now rewrite !shiftl_spec_low.
Qed.

Lemma shiftr_ldiff : forall a b n,
 (ldiff a b) >> n == ldiff (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec', ldiff_spec.
Qed.

(** We cannot have a function complementing all bits of a number,
    otherwise it would have an infinity of bit 1. Nonetheless,
    we can design a bounded complement *)

Definition ones n := P (1 << n).

Definition lnot a n := lxor a (ones n).

Instance ones_wd : Proper (eq==>eq) ones.
Proof. unfold ones. solve_proper. Qed.

Instance lnot_wd : Proper (eq==>eq==>eq) lnot.
Proof. unfold lnot. solve_proper. Qed.

Lemma ones_equiv : forall n, ones n == P (2^n).
Proof.
 intros; unfold ones; now rewrite shiftl_1_l.
Qed.

Lemma ones_add : forall n m, ones (m+n) == 2^m * ones n + ones m.
Proof.
 intros n m. rewrite !ones_equiv.
 rewrite <- !sub_1_r, mul_sub_distr_l, mul_1_r, <- pow_add_r.
 rewrite add_sub_assoc, sub_add. reflexivity.
 apply pow_le_mono_r. order'.
 rewrite <- (add_0_r m) at 1. apply add_le_mono_l, le_0_l.
 rewrite <- (pow_0_r 2). apply pow_le_mono_r. order'. apply le_0_l.
Qed.

Lemma ones_div_pow2 : forall n m, m<=n -> ones n / 2^m == ones (n-m).
Proof.
 intros n m H. symmetry. apply div_unique with (ones m).
 rewrite ones_equiv.
 apply le_succ_l. rewrite succ_pred; order_nz.
 rewrite <- (sub_add m n H) at 1. rewrite (add_comm _ m).
 apply ones_add.
Qed.

Lemma ones_mod_pow2 : forall n m, m<=n -> (ones n) mod (2^m) == ones m.
Proof.
 intros n m H. symmetry. apply mod_unique with (ones (n-m)).
 rewrite ones_equiv.
 apply le_succ_l. rewrite succ_pred; order_nz.
 rewrite <- (sub_add m n H) at 1. rewrite (add_comm _ m).
 apply ones_add.
Qed.

Lemma ones_spec_low : forall n m, m<n -> (ones n).[m] = true.
Proof.
 intros. apply testbit_true. rewrite ones_div_pow2 by order.
 rewrite <- (pow_1_r 2). rewrite ones_mod_pow2.
 rewrite ones_equiv. now nzsimpl'.
 apply le_add_le_sub_r. nzsimpl. now apply le_succ_l.
Qed.

Lemma ones_spec_high : forall n m, n<=m -> (ones n).[m] = false.
Proof.
 intros.
 destruct (eq_0_gt_0_cases n) as [EQ|LT]; rewrite ones_equiv.
 now rewrite EQ, pow_0_r, one_succ, pred_succ, bits_0.
 apply bits_above_log2.
 rewrite log2_pred_pow2; trivial. rewrite <-le_succ_l, succ_pred; order.
Qed.

Lemma ones_spec_iff : forall n m, (ones n).[m] = true <-> m<n.
Proof.
 intros. split. intros H.
 apply lt_nge. intro H'. apply ones_spec_high in H'.
 rewrite H in H'; discriminate.
 apply ones_spec_low.
Qed.

Lemma lnot_spec_low : forall a n m, m<n ->
 (lnot a n).[m] = negb a.[m].
Proof.
 intros. unfold lnot. now rewrite lxor_spec, ones_spec_low.
Qed.

Lemma lnot_spec_high : forall a n m, n<=m ->
 (lnot a n).[m] = a.[m].
Proof.
 intros. unfold lnot. now rewrite lxor_spec, ones_spec_high, xorb_false_r.
Qed.

Lemma lnot_involutive : forall a n, lnot (lnot a n) n == a.
Proof.
 intros a n. bitwise.
 destruct (le_gt_cases n m).
 now rewrite 2 lnot_spec_high.
 now rewrite 2 lnot_spec_low, negb_involutive.
Qed.

Lemma lnot_0_l : forall n, lnot 0 n == ones n.
Proof.
 intros. unfold lnot. apply lxor_0_l.
Qed.

Lemma lnot_ones : forall n, lnot (ones n) n == 0.
Proof.
 intros. unfold lnot. apply lxor_nilpotent.
Qed.

(** Bounded complement and other operations *)

Lemma lor_ones_low : forall a n, log2 a < n ->
 lor a (ones n) == ones n.
Proof.
 intros a n H. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, bits_above_log2; trivial.
 now apply lt_le_trans with n.
 now rewrite ones_spec_low, orb_true_r.
Qed.

Lemma land_ones : forall a n, land a (ones n) == a mod 2^n.
Proof.
 intros a n. bitwise. destruct (le_gt_cases n m).
 now rewrite ones_spec_high, mod_pow2_bits_high, andb_false_r.
 now rewrite ones_spec_low, mod_pow2_bits_low, andb_true_r.
Qed.

Lemma land_ones_low : forall a n, log2 a < n ->
 land a (ones n) == a.
Proof.
 intros; rewrite land_ones. apply mod_small.
 apply log2_lt_cancel. rewrite log2_pow2; trivial using le_0_l.
Qed.

Lemma ldiff_ones_r : forall a n,
 ldiff a (ones n) == (a >> n) << n.
Proof.
 intros a n. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, shiftl_spec_high', shiftr_spec'; trivial.
 rewrite sub_add; trivial. apply andb_true_r.
 now rewrite ones_spec_low, shiftl_spec_low, andb_false_r.
Qed.

Lemma ldiff_ones_r_low : forall a n, log2 a < n ->
 ldiff a (ones n) == 0.
Proof.
 intros a n H. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, bits_above_log2; trivial.
 now apply lt_le_trans with n.
 now rewrite ones_spec_low, andb_false_r.
Qed.

Lemma ldiff_ones_l_low : forall a n, log2 a < n ->
 ldiff (ones n) a == lnot a n.
Proof.
 intros a n H. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, lnot_spec_high, bits_above_log2; trivial.
 now apply lt_le_trans with n.
 now rewrite ones_spec_low, lnot_spec_low.
Qed.

Lemma lor_lnot_diag : forall a n,
 lor a (lnot a n) == lor a (ones n).
Proof.
 intros a n. bitwise.
 destruct (le_gt_cases n m).
 rewrite lnot_spec_high, ones_spec_high; trivial. now destruct a.[m].
 rewrite lnot_spec_low, ones_spec_low; trivial. now destruct a.[m].
Qed.

Lemma lor_lnot_diag_low : forall a n, log2 a < n ->
 lor a (lnot a n) == ones n.
Proof.
 intros a n H. now rewrite lor_lnot_diag, lor_ones_low.
Qed.

Lemma land_lnot_diag : forall a n,
 land a (lnot a n) == ldiff a (ones n).
Proof.
 intros a n. bitwise.
 destruct (le_gt_cases n m).
 rewrite lnot_spec_high, ones_spec_high; trivial. now destruct a.[m].
 rewrite lnot_spec_low, ones_spec_low; trivial. now destruct a.[m].
Qed.

Lemma land_lnot_diag_low : forall a n, log2 a < n ->
 land a (lnot a n) == 0.
Proof.
 intros. now rewrite land_lnot_diag, ldiff_ones_r_low.
Qed.

Lemma lnot_lor_low : forall a b n, log2 a < n -> log2 b < n ->
 lnot (lor a b) n == land (lnot a n) (lnot b n).
Proof.
 intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m).
 rewrite !lnot_spec_high, lor_spec, !bits_above_log2; trivial.
 now apply lt_le_trans with n.
 now apply lt_le_trans with n.
 now rewrite !lnot_spec_low, lor_spec, negb_orb.
Qed.

Lemma lnot_land_low : forall a b n, log2 a < n -> log2 b < n ->
 lnot (land a b) n == lor (lnot a n) (lnot b n).
Proof.
 intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m).
 rewrite !lnot_spec_high, land_spec, !bits_above_log2; trivial.
 now apply lt_le_trans with n.
 now apply lt_le_trans with n.
 now rewrite !lnot_spec_low, land_spec, negb_andb.
Qed.

Lemma ldiff_land_low : forall a b n, log2 a < n ->
 ldiff a b == land a (lnot b n).
Proof.
 intros a b n Ha. bitwise. destruct (le_gt_cases n m).
 rewrite (bits_above_log2 a m). trivial.
 now apply lt_le_trans with n.
 rewrite !lnot_spec_low; trivial.
Qed.

Lemma lnot_ldiff_low : forall a b n, log2 a < n -> log2 b < n ->
 lnot (ldiff a b) n == lor (lnot a n) b.
Proof.
 intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m).
 rewrite !lnot_spec_high, ldiff_spec, !bits_above_log2; trivial.
 now apply lt_le_trans with n.
 now apply lt_le_trans with n.
 now rewrite !lnot_spec_low, ldiff_spec, negb_andb, negb_involutive.
Qed.

Lemma lxor_lnot_lnot : forall a b n,
 lxor (lnot a n) (lnot b n) == lxor a b.
Proof.
 intros a b n. bitwise. destruct (le_gt_cases n m).
 rewrite !lnot_spec_high; trivial.
 rewrite !lnot_spec_low, xorb_negb_negb; trivial.
Qed.

Lemma lnot_lxor_l : forall a b n,
 lnot (lxor a b) n == lxor (lnot a n) b.
Proof.
 intros a b n. bitwise. destruct (le_gt_cases n m).
 rewrite !lnot_spec_high, lxor_spec; trivial.
 rewrite !lnot_spec_low, lxor_spec, negb_xorb_l; trivial.
Qed.

Lemma lnot_lxor_r : forall a b n,
 lnot (lxor a b) n == lxor a (lnot b n).
Proof.
 intros a b n. bitwise. destruct (le_gt_cases n m).
 rewrite !lnot_spec_high, lxor_spec; trivial.
 rewrite !lnot_spec_low, lxor_spec, negb_xorb_r; trivial.
Qed.

Lemma lxor_lor : forall a b, land a b == 0 ->
 lxor a b == lor a b.
Proof.
 intros a b H. bitwise.
 assert (a.[m] && b.[m] = false)
   by now rewrite <- land_spec, H, bits_0.
 now destruct a.[m], b.[m].
Qed.

(** Bitwise operations and log2 *)

Lemma log2_bits_unique : forall a n,
 a.[n] = true ->
 (forall m, n<m -> a.[m] = false) ->
 log2 a == n.
Proof.
 intros a n H H'.
 destruct (eq_0_gt_0_cases a) as [Ha|Ha].
 now rewrite Ha, bits_0 in H.
 apply le_antisymm; apply le_ngt; intros LT.
 specialize (H' _ LT). now rewrite bit_log2 in H' by order.
 now rewrite bits_above_log2 in H by order.
Qed.

Lemma log2_shiftr : forall a n, log2 (a >> n) == log2 a - n.
Proof.
 intros a n.
 destruct (eq_0_gt_0_cases a) as [Ha|Ha].
 now rewrite Ha, shiftr_0_l, log2_nonpos, sub_0_l by order.
 destruct (lt_ge_cases (log2 a) n).
 rewrite shiftr_eq_0, log2_nonpos by order.
 symmetry. rewrite sub_0_le; order.
 apply log2_bits_unique.
 now rewrite shiftr_spec', sub_add, bit_log2 by order.
 intros m Hm.
 rewrite shiftr_spec'; trivial. apply bits_above_log2; try order.
 now apply lt_sub_lt_add_r.
Qed.

Lemma log2_shiftl : forall a n, a~=0 -> log2 (a << n) == log2 a + n.
Proof.
 intros a n Ha.
 rewrite shiftl_mul_pow2, add_comm by trivial.
 apply log2_mul_pow2. generalize (le_0_l a); order. apply le_0_l.
Qed.

Lemma log2_lor : forall a b,
 log2 (lor a b) == max (log2 a) (log2 b).
Proof.
 assert (AUX : forall a b, a<=b -> log2 (lor a b) == log2 b).
  intros a b H.
  destruct (eq_0_gt_0_cases a) as [Ha|Ha]. now rewrite Ha, lor_0_l.
  apply log2_bits_unique.
  now rewrite lor_spec, bit_log2, orb_true_r by order.
  intros m Hm. assert (H' := log2_le_mono _ _ H).
  now rewrite lor_spec, 2 bits_above_log2 by order.
 (* main *)
 intros a b. destruct (le_ge_cases a b) as [H|H].
 rewrite max_r by now apply log2_le_mono.
 now apply AUX.
 rewrite max_l by now apply log2_le_mono.
 rewrite lor_comm. now apply AUX.
Qed.

Lemma log2_land : forall a b,
 log2 (land a b) <= min (log2 a) (log2 b).
Proof.
 assert (AUX : forall a b, a<=b -> log2 (land a b) <= log2 a).
  intros a b H.
  apply le_ngt. intros H'.
  destruct (eq_decidable (land a b) 0) as [EQ|NEQ].
  rewrite EQ in H'. apply log2_lt_cancel in H'. generalize (le_0_l a); order.
  generalize (bit_log2 (land a b) NEQ).
  now rewrite land_spec, bits_above_log2.
 (* main *)
 intros a b.
 destruct (le_ge_cases a b) as [H|H].
 rewrite min_l by now apply log2_le_mono. now apply AUX.
 rewrite min_r by now apply log2_le_mono. rewrite land_comm. now apply AUX.
Qed.

Lemma log2_lxor : forall a b,
 log2 (lxor a b) <= max (log2 a) (log2 b).
Proof.
 assert (AUX : forall a b, a<=b -> log2 (lxor a b) <= log2 b).
  intros a b H.
  apply le_ngt. intros H'.
  destruct (eq_decidable (lxor a b) 0) as [EQ|NEQ].
  rewrite EQ in H'. apply log2_lt_cancel in H'. generalize (le_0_l a); order.
  generalize (bit_log2 (lxor a b) NEQ).
  rewrite lxor_spec, 2 bits_above_log2; try order. discriminate.
  apply le_lt_trans with (log2 b); trivial. now apply log2_le_mono.
 (* main *)
 intros a b.
 destruct (le_ge_cases a b) as [H|H].
 rewrite max_r by now apply log2_le_mono. now apply AUX.
 rewrite max_l by now apply log2_le_mono. rewrite lxor_comm. now apply AUX.
Qed.

(** Bitwise operations and arithmetical operations *)

Local Notation xor3 a b c := (xorb (xorb a b) c).
Local Notation lxor3 a b c := (lxor (lxor a b) c).

Local Notation nextcarry a b c := ((a&&b) || (c && (a||b))).
Local Notation lnextcarry a b c := (lor (land a b) (land c (lor a b))).

Lemma add_bit0 : forall a b, (a+b).[0] = xorb a.[0] b.[0].
Proof.
 intros. now rewrite !bit0_odd, odd_add.
Qed.

Lemma add3_bit0 : forall a b c,
 (a+b+c).[0] = xor3 a.[0] b.[0] c.[0].
Proof.
 intros. now rewrite !add_bit0.
Qed.

Lemma add3_bits_div2 : forall (a0 b0 c0 : bool),
 (a0 + b0 + c0)/2 == nextcarry a0 b0 c0.
Proof.
 assert (H : 1+1 == 2) by now nzsimpl'.
 intros [|] [|] [|]; simpl; rewrite ?add_0_l, ?add_0_r, ?H;
  (apply div_same; order') || (apply div_small; order') || idtac.
 symmetry. apply div_unique with 1. order'. now nzsimpl'.
Qed.

Lemma add_carry_div2 : forall a b (c0:bool),
 (a + b + c0)/2 == a/2 + b/2 + nextcarry a.[0] b.[0] c0.
Proof.
 intros.
 rewrite <- add3_bits_div2.
 rewrite (add_comm ((a/2)+_)).
 rewrite <- div_add by order'.
 f_equiv.
 rewrite <- !div2_div, mul_comm, mul_add_distr_l.
 rewrite (div2_odd a), <- bit0_odd at 1. fold (b2n a.[0]).
 rewrite (div2_odd b), <- bit0_odd at 1. fold (b2n b.[0]).
 rewrite add_shuffle1.
 rewrite <-(add_assoc _ _ c0). apply add_comm.
Qed.

(** The main result concerning addition: we express the bits of the sum
  in term of bits of [a] and [b] and of some carry stream which is also
  recursively determined by another equation.
*)

Lemma add_carry_bits : forall a b (c0:bool), exists c,
 a+b+c0 == lxor3 a b c /\ c/2 == lnextcarry a b c /\ c.[0] = c0.
Proof.
 intros a b c0.
 (* induction over some n such that [a<2^n] and [b<2^n] *)
 set (n:=max a b).
 assert (Ha : a<2^n).
  apply lt_le_trans with (2^a). apply pow_gt_lin_r, lt_1_2.
  apply pow_le_mono_r. order'. unfold n.
  destruct (le_ge_cases a b); [rewrite max_r|rewrite max_l]; order'.
 assert (Hb : b<2^n).
  apply lt_le_trans with (2^b). apply pow_gt_lin_r, lt_1_2.
  apply pow_le_mono_r. order'. unfold n.
  destruct (le_ge_cases a b); [rewrite max_r|rewrite max_l]; order'.
 clearbody n.
 revert a b c0 Ha Hb. induct n.
 (*base*)
 intros a b c0. rewrite !pow_0_r, !one_succ, !lt_succ_r. intros Ha Hb.
 exists c0.
 setoid_replace a with 0 by (generalize (le_0_l a); order').
 setoid_replace b with 0 by (generalize (le_0_l b); order').
 rewrite !add_0_l, !lxor_0_l, !lor_0_r, !land_0_r, !lor_0_r.
 rewrite b2n_div2, b2n_bit0; now repeat split.
 (*step*)
 intros n IH a b c0 Ha Hb.
 set (c1:=nextcarry a.[0] b.[0] c0).
 destruct (IH (a/2) (b/2) c1) as (c & IH1 & IH2 & Hc); clear IH.
 apply div_lt_upper_bound; trivial. order'. now rewrite <- pow_succ_r'.
 apply div_lt_upper_bound; trivial. order'. now rewrite <- pow_succ_r'.
 exists (c0 + 2*c). repeat split.
 (* - add *)
 bitwise.
 destruct (zero_or_succ m) as [EQ|[m' EQ]]; rewrite EQ; clear EQ.
 now rewrite add_b2n_double_bit0, add3_bit0, b2n_bit0.
 rewrite <- !div2_bits, <- 2 lxor_spec.
 f_equiv.
 rewrite add_b2n_double_div2, <- IH1. apply add_carry_div2.
 (* - carry *)
 rewrite add_b2n_double_div2.
 bitwise.
 destruct (zero_or_succ m) as [EQ|[m' EQ]]; rewrite EQ; clear EQ.
 now rewrite add_b2n_double_bit0.
 rewrite <- !div2_bits, IH2. autorewrite with bitwise.
 now rewrite add_b2n_double_div2.
 (* - carry0 *)
 apply add_b2n_double_bit0.
Qed.

(** Particular case : the second bit of an addition *)

Lemma add_bit1 : forall a b,
 (a+b).[1] = xor3 a.[1] b.[1] (a.[0] && b.[0]).
Proof.
 intros a b.
 destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc).
 simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1.
 autorewrite with bitwise. f_equal.
 rewrite one_succ, <- div2_bits, EQ2.
 autorewrite with bitwise.
 rewrite Hc. simpl. apply orb_false_r.
Qed.

(** In an addition, there will be no carries iff there is
  no common bits in the numbers to add *)

Lemma nocarry_equiv : forall a b c,
 c/2 == lnextcarry a b c -> c.[0] = false ->
 (c == 0 <-> land a b == 0).
Proof.
 intros a b c H H'.
 split. intros EQ; rewrite EQ in *.
 rewrite div_0_l in H by order'.
 symmetry in H. now apply lor_eq_0_l in H.
 intros EQ. rewrite EQ, lor_0_l in H.
 apply bits_inj_0.
 induct n. trivial.
 intros n IH.
 rewrite <- div2_bits, H.
 autorewrite with bitwise.
 now rewrite IH.
Qed.

(** When there is no common bits, the addition is just a xor *)

Lemma add_nocarry_lxor : forall a b, land a b == 0 ->
 a+b == lxor a b.
Proof.
 intros a b H.
 destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc).
 simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1.
 apply (nocarry_equiv a b c) in H; trivial.
 rewrite H. now rewrite lxor_0_r.
Qed.

(** A null [ldiff] implies being smaller *)

Lemma ldiff_le : forall a b, ldiff a b == 0 -> a <= b.
Proof.
 cut (forall n a b, a < 2^n -> ldiff a b == 0 -> a <= b).
 intros H a b. apply (H a), pow_gt_lin_r; order'.
 induct n.
 intros a b Ha _. rewrite pow_0_r, one_succ, lt_succ_r in Ha.
 assert (Ha' : a == 0) by (generalize (le_0_l a); order').
 rewrite Ha'. apply le_0_l.
 intros n IH a b Ha H.
 assert (NEQ : 2 ~= 0) by order'.
 rewrite (div_mod a 2 NEQ), (div_mod b 2 NEQ).
 apply add_le_mono.
 apply mul_le_mono_l.
 apply IH.
 apply div_lt_upper_bound; trivial. now rewrite <- pow_succ_r'.
 rewrite <- (pow_1_r 2), <- 2 shiftr_div_pow2.
 now rewrite <- shiftr_ldiff, H, shiftr_div_pow2, pow_1_r, div_0_l.
 rewrite <- 2 bit0_mod.
 apply bits_inj_iff in H. specialize (H 0).
 rewrite ldiff_spec, bits_0 in H.
 destruct a.[0], b.[0]; try discriminate; simpl; order'.
Qed.

(** Subtraction can be a ldiff when the opposite ldiff is null. *)

Lemma sub_nocarry_ldiff : forall a b, ldiff b a == 0 ->
 a-b == ldiff a b.
Proof.
 intros a b H.
 apply add_cancel_r with b.
 rewrite sub_add.
 symmetry.
 rewrite add_nocarry_lxor.
 bitwise.
 apply bits_inj_iff in H. specialize (H m).
 rewrite ldiff_spec, bits_0 in H.
 now destruct a.[m], b.[m].
 apply land_ldiff.
 now apply ldiff_le.
Qed.

(** We can express lnot in term of subtraction *)

Lemma add_lnot_diag_low : forall a n, log2 a < n ->
 a + lnot a n == ones n.
Proof.
 intros a n H.
 assert (H' := land_lnot_diag_low a n H).
 rewrite add_nocarry_lxor, lxor_lor by trivial.
 now apply lor_lnot_diag_low.
Qed.

Lemma lnot_sub_low : forall a n, log2 a < n ->
 lnot a n == ones n - a.
Proof.
 intros a n H.
 now rewrite <- (add_lnot_diag_low a n H), add_comm, add_sub.
Qed.

(** Adding numbers with no common bits cannot lead to a much bigger number *)

Lemma add_nocarry_lt_pow2 : forall a b n, land a b == 0 ->
 a < 2^n -> b < 2^n -> a+b < 2^n.
Proof.
 intros a b n H Ha Hb.
 rewrite add_nocarry_lxor by trivial.
 apply div_small_iff. order_nz.
 rewrite <- shiftr_div_pow2, shiftr_lxor, !shiftr_div_pow2.
 rewrite 2 div_small by trivial.
 apply lxor_0_l.
Qed.

Lemma add_nocarry_mod_lt_pow2 : forall a b n, land a b == 0 ->
 a mod 2^n + b mod 2^n < 2^n.
Proof.
 intros a b n H.
 apply add_nocarry_lt_pow2.
 bitwise.
 destruct (le_gt_cases n m).
 now rewrite mod_pow2_bits_high.
 now rewrite !mod_pow2_bits_low, <- land_spec, H, bits_0.
 apply mod_upper_bound; order_nz.
 apply mod_upper_bound; order_nz.
Qed.

End NBitsProp.