summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZAddOrder.v
blob: 619a66348a881b53255e8da349ea6fb978447428 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Import NZAxioms NZBase NZMul NZOrder.

Module Type NZAddOrderProp (Import NZ : NZOrdAxiomsSig').
Include NZBaseProp NZ <+ NZMulProp NZ <+ NZOrderProp NZ.

Theorem add_lt_mono_l : forall n m p, n < m <-> p + n < p + m.
Proof.
intros n m p; nzinduct p. now nzsimpl.
intro p. nzsimpl. now rewrite <- succ_lt_mono.
Qed.

Theorem add_lt_mono_r : forall n m p, n < m <-> n + p < m + p.
Proof.
intros n m p. rewrite (add_comm n p), (add_comm m p); apply add_lt_mono_l.
Qed.

Theorem add_lt_mono : forall n m p q, n < m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply lt_trans with (m + p);
[now apply add_lt_mono_r | now apply add_lt_mono_l].
Qed.

Theorem add_le_mono_l : forall n m p, n <= m <-> p + n <= p + m.
Proof.
intros n m p; nzinduct p. now nzsimpl.
intro p. nzsimpl. now rewrite <- succ_le_mono.
Qed.

Theorem add_le_mono_r : forall n m p, n <= m <-> n + p <= m + p.
Proof.
intros n m p. rewrite (add_comm n p), (add_comm m p); apply add_le_mono_l.
Qed.

Theorem add_le_mono : forall n m p q, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H1 H2.
apply le_trans with (m + p);
[now apply add_le_mono_r | now apply add_le_mono_l].
Qed.

Theorem add_lt_le_mono : forall n m p q, n < m -> p <= q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply lt_le_trans with (m + p);
[now apply add_lt_mono_r | now apply add_le_mono_l].
Qed.

Theorem add_le_lt_mono : forall n m p q, n <= m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
apply le_lt_trans with (m + p);
[now apply add_le_mono_r | now apply add_lt_mono_l].
Qed.

Theorem add_pos_pos : forall n m, 0 < n -> 0 < m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_lt_mono.
Qed.

Theorem add_pos_nonneg : forall n m, 0 < n -> 0 <= m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_lt_le_mono.
Qed.

Theorem add_nonneg_pos : forall n m, 0 <= n -> 0 < m -> 0 < n + m.
Proof.
intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_le_lt_mono.
Qed.

Theorem add_nonneg_nonneg : forall n m, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof.
intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_le_mono.
Qed.

Theorem lt_add_pos_l : forall n m, 0 < n -> m < n + m.
Proof.
intros n m. rewrite (add_lt_mono_r 0 n m). now nzsimpl.
Qed.

Theorem lt_add_pos_r : forall n m, 0 < n -> m < m + n.
Proof.
intros; rewrite add_comm; now apply lt_add_pos_l.
Qed.

Theorem le_lt_add_lt : forall n m p q, n <= m -> p + m < q + n -> p < q.
Proof.
intros n m p q H1 H2. destruct (le_gt_cases q p); [| assumption].
contradict H2. rewrite nlt_ge. now apply add_le_mono.
Qed.

Theorem lt_le_add_lt : forall n m p q, n < m -> p + m <= q + n -> p < q.
Proof.
intros n m p q H1 H2. destruct (le_gt_cases q p); [| assumption].
contradict H2. rewrite nle_gt. now apply add_le_lt_mono.
Qed.

Theorem le_le_add_le : forall n m p q, n <= m -> p + m <= q + n -> p <= q.
Proof.
intros n m p q H1 H2. destruct (le_gt_cases p q); [assumption |].
contradict H2. rewrite nle_gt. now apply add_lt_le_mono.
Qed.

Theorem add_lt_cases : forall n m p q, n + m < p + q -> n < p \/ m < q.
Proof.
intros n m p q H;
destruct (le_gt_cases p n) as [H1 | H1]; [| now left].
destruct (le_gt_cases q m) as [H2 | H2]; [| now right].
contradict H; rewrite nlt_ge. now apply add_le_mono.
Qed.

Theorem add_le_cases : forall n m p q, n + m <= p + q -> n <= p \/ m <= q.
Proof.
intros n m p q H.
destruct (le_gt_cases n p) as [H1 | H1]. now left.
destruct (le_gt_cases m q) as [H2 | H2]. now right.
contradict H; rewrite nle_gt. now apply add_lt_mono.
Qed.

Theorem add_neg_cases : forall n m, n + m < 0 -> n < 0 \/ m < 0.
Proof.
intros n m H; apply add_lt_cases; now nzsimpl.
Qed.

Theorem add_pos_cases : forall n m, 0 < n + m -> 0 < n \/ 0 < m.
Proof.
intros n m H; apply add_lt_cases; now nzsimpl.
Qed.

Theorem add_nonpos_cases : forall n m, n + m <= 0 -> n <= 0 \/ m <= 0.
Proof.
intros n m H; apply add_le_cases; now nzsimpl.
Qed.

Theorem add_nonneg_cases : forall n m, 0 <= n + m -> 0 <= n \/ 0 <= m.
Proof.
intros n m H; apply add_le_cases; now nzsimpl.
Qed.

(** Substraction *)

(** We can prove the existence of a subtraction of any number by
    a smaller one *)

Lemma le_exists_sub : forall n m, n<=m -> exists p, m == p+n /\ 0<=p.
Proof.
 intros n m H. apply le_ind with (4:=H). solve_proper.
 exists 0; nzsimpl; split; order.
 clear m H. intros m H (p & EQ & LE). exists (S p).
  split. nzsimpl. now f_equiv. now apply le_le_succ_r.
Qed.

(** For the moment, it doesn't seem possible to relate
    this existing subtraction with [sub].
*)

End NZAddOrderProp.