summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
blob: aceb8984fdbc334eaeb2908fefe22427dbe5a9d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: ZSigZAxioms.v 11282 2008-07-28 11:51:53Z msozeau $ i*)

Require Import ZArith.
Require Import ZAxioms.
Require Import ZSig.

(** * The interface [ZSig.ZType] implies the interface [ZAxiomsSig] *)

Module ZSig_ZAxioms (Z:ZType) <: ZAxiomsSig.

Delimit Scope IntScope with Int.
Bind Scope IntScope with Z.t.
Open Local Scope IntScope.
Notation "[ x ]" := (Z.to_Z x) : IntScope.
Infix "=="  := Z.eq (at level 70) : IntScope.
Notation "0" := Z.zero : IntScope.
Infix "+" := Z.add : IntScope.
Infix "-" := Z.sub : IntScope.
Infix "*" := Z.mul : IntScope.
Notation "- x" := (Z.opp x) : IntScope.

Hint Rewrite 
 Z.spec_0 Z.spec_1 Z.spec_add Z.spec_sub Z.spec_pred Z.spec_succ
 Z.spec_mul Z.spec_opp Z.spec_of_Z : Zspec.

Ltac zsimpl := unfold Z.eq in *; autorewrite with Zspec.

Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
Module Export NZAxiomsMod <: NZAxiomsSig.

Definition NZ := Z.t.
Definition NZeq := Z.eq.
Definition NZ0 := Z.zero.
Definition NZsucc := Z.succ.
Definition NZpred := Z.pred.
Definition NZadd := Z.add.
Definition NZsub := Z.sub.
Definition NZmul := Z.mul.

Theorem NZeq_equiv : equiv Z.t Z.eq.
Proof.
repeat split; repeat red; intros; auto; congruence.
Qed.

Add Relation Z.t Z.eq
 reflexivity proved by (proj1 NZeq_equiv)
 symmetry proved by (proj2 (proj2 NZeq_equiv))
 transitivity proved by (proj1 (proj2 NZeq_equiv))
 as NZeq_rel.

Add Morphism NZsucc with signature Z.eq ==> Z.eq as NZsucc_wd.
Proof.
intros; zsimpl; f_equal; assumption.
Qed.

Add Morphism NZpred with signature Z.eq ==> Z.eq as NZpred_wd.
Proof.
intros; zsimpl; f_equal; assumption.
Qed.

Add Morphism NZadd with signature Z.eq ==> Z.eq ==> Z.eq as NZadd_wd.
Proof.
intros; zsimpl; f_equal; assumption.
Qed.

Add Morphism NZsub with signature Z.eq ==> Z.eq ==> Z.eq as NZsub_wd.
Proof.
intros; zsimpl; f_equal; assumption.
Qed.

Add Morphism NZmul with signature Z.eq ==> Z.eq ==> Z.eq as NZmul_wd.
Proof.
intros; zsimpl; f_equal; assumption.
Qed.

Theorem NZpred_succ : forall n, Z.pred (Z.succ n) == n.
Proof.
intros; zsimpl; auto with zarith.
Qed.

Section Induction.

Variable A : Z.t -> Prop.
Hypothesis A_wd : predicate_wd Z.eq A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (Z.succ n). 

Add Morphism A with signature Z.eq ==> iff as A_morph.
Proof. apply A_wd. Qed.

Let B (z : Z) := A (Z.of_Z z).

Lemma B0 : B 0.
Proof.
unfold B; simpl.
rewrite <- (A_wd 0); auto.
zsimpl; auto.
Qed.

Lemma BS : forall z : Z, B z -> B (z + 1).
Proof.
intros z H.
unfold B in *. apply -> AS in H.
setoid_replace (Z.of_Z (z + 1)) with (Z.succ (Z.of_Z z)); auto.
zsimpl; auto.
Qed.

Lemma BP : forall z : Z, B z -> B (z - 1).
Proof.
intros z H.
unfold B in *. rewrite AS.
setoid_replace (Z.succ (Z.of_Z (z - 1))) with (Z.of_Z z); auto.
zsimpl; auto with zarith.
Qed.

Lemma B_holds : forall z : Z, B z.
Proof.
intros; destruct (Z_lt_le_dec 0 z).
apply natlike_ind; auto with zarith.
apply B0.
intros; apply BS; auto.
replace z with (-(-z))%Z in * by (auto with zarith).
remember (-z)%Z as z'.
pattern z'; apply natlike_ind.
apply B0.
intros; rewrite Zopp_succ; unfold Zpred; apply BP; auto.
subst z'; auto with zarith.
Qed.

Theorem NZinduction : forall n, A n.
Proof.
intro n. setoid_replace n with (Z.of_Z (Z.to_Z n)).
apply B_holds.
zsimpl; auto.
Qed.

End Induction.

Theorem NZadd_0_l : forall n, 0 + n == n.
Proof.
intros; zsimpl; auto with zarith.
Qed.

Theorem NZadd_succ_l : forall n m, (Z.succ n) + m == Z.succ (n + m).
Proof.
intros; zsimpl; auto with zarith.
Qed.

Theorem NZsub_0_r : forall n, n - 0 == n.
Proof.
intros; zsimpl; auto with zarith.
Qed.

Theorem NZsub_succ_r : forall n m, n - (Z.succ m) == Z.pred (n - m).
Proof.
intros; zsimpl; auto with zarith.
Qed.

Theorem NZmul_0_l : forall n, 0 * n == 0.
Proof.
intros; zsimpl; auto with zarith.
Qed.

Theorem NZmul_succ_l : forall n m, (Z.succ n) * m == n * m + m.
Proof.
intros; zsimpl; ring.
Qed.

End NZAxiomsMod.

Definition NZlt := Z.lt.
Definition NZle := Z.le.
Definition NZmin := Z.min.
Definition NZmax := Z.max.

Infix "<=" := Z.le : IntScope.
Infix "<" := Z.lt : IntScope.

Lemma spec_compare_alt : forall x y, Z.compare x y = ([x] ?= [y])%Z.
Proof.
 intros; generalize (Z.spec_compare x y).
 destruct (Z.compare x y); auto.
 intros H; rewrite H; symmetry; apply Zcompare_refl.
Qed.

Lemma spec_lt : forall x y, (x<y) <-> ([x]<[y])%Z.
Proof.
 intros; unfold Z.lt, Zlt; rewrite spec_compare_alt; intuition.
Qed.

Lemma spec_le : forall x y, (x<=y) <-> ([x]<=[y])%Z.
Proof.
 intros; unfold Z.le, Zle; rewrite spec_compare_alt; intuition.
Qed.

Lemma spec_min : forall x y, [Z.min x y] = Zmin [x] [y].
Proof.
 intros; unfold Z.min, Zmin.
 rewrite spec_compare_alt; destruct Zcompare; auto.
Qed.

Lemma spec_max : forall x y, [Z.max x y] = Zmax [x] [y].
Proof.
 intros; unfold Z.max, Zmax.
 rewrite spec_compare_alt; destruct Zcompare; auto.
Qed.

Add Morphism Z.compare with signature Z.eq ==> Z.eq ==> (@eq comparison) as compare_wd.
Proof. 
intros x x' Hx y y' Hy.
rewrite 2 spec_compare_alt; unfold Z.eq in *; rewrite Hx, Hy; intuition.
Qed.

Add Morphism Z.lt with signature Z.eq ==> Z.eq ==> iff as NZlt_wd.
Proof.
intros x x' Hx y y' Hy; unfold Z.lt; rewrite Hx, Hy; intuition.
Qed.

Add Morphism Z.le with signature Z.eq ==> Z.eq ==> iff as NZle_wd.
Proof.
intros x x' Hx y y' Hy; unfold Z.le; rewrite Hx, Hy; intuition.
Qed.

Add Morphism Z.min with signature Z.eq ==> Z.eq ==> Z.eq as NZmin_wd.
Proof.
intros; red; rewrite 2 spec_min; congruence.
Qed.

Add Morphism Z.max with signature Z.eq ==> Z.eq ==> Z.eq as NZmax_wd.
Proof.
intros; red; rewrite 2 spec_max; congruence.
Qed.

Theorem NZlt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
Proof.
intros.
unfold Z.eq; rewrite spec_lt, spec_le; omega.
Qed.

Theorem NZlt_irrefl : forall n, ~ n < n.
Proof.
intros; rewrite spec_lt; auto with zarith.
Qed.

Theorem NZlt_succ_r : forall n m, n < (Z.succ m) <-> n <= m.
Proof.
intros; rewrite spec_lt, spec_le, Z.spec_succ; omega.
Qed.

Theorem NZmin_l : forall n m, n <= m -> Z.min n m == n.
Proof.
intros n m; unfold Z.eq; rewrite spec_le, spec_min.
generalize (Zmin_spec [n] [m]); omega.
Qed.

Theorem NZmin_r : forall n m, m <= n -> Z.min n m == m.
Proof.
intros n m; unfold Z.eq; rewrite spec_le, spec_min.
generalize (Zmin_spec [n] [m]); omega.
Qed.

Theorem NZmax_l : forall n m, m <= n -> Z.max n m == n.
Proof.
intros n m; unfold Z.eq; rewrite spec_le, spec_max.
generalize (Zmax_spec [n] [m]); omega.
Qed.

Theorem NZmax_r : forall n m, n <= m -> Z.max n m == m.
Proof.
intros n m; unfold Z.eq; rewrite spec_le, spec_max.
generalize (Zmax_spec [n] [m]); omega.
Qed.

End NZOrdAxiomsMod.

Definition Zopp := Z.opp.

Add Morphism Z.opp with signature Z.eq ==> Z.eq as Zopp_wd.
Proof.
intros; zsimpl; auto with zarith.
Qed.

Theorem Zsucc_pred : forall n, Z.succ (Z.pred n) == n.
Proof.
red; intros; zsimpl; auto with zarith.
Qed.

Theorem Zopp_0 : - 0 == 0.
Proof.
red; intros; zsimpl; auto with zarith.
Qed.

Theorem Zopp_succ : forall n, - (Z.succ n) == Z.pred (- n).
Proof.
intros; zsimpl; auto with zarith.
Qed.

End ZSig_ZAxioms.