summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
blob: bb8d543e101e238cc4b30e077901f49990f963f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

Require Import ZArith ZAxioms ZDivFloor ZSig.

(** * The interface [ZSig.ZType] implies the interface [ZAxiomsSig]

    It also provides [sgn], [abs], [div], [mod]
*)


Module ZTypeIsZAxioms (Import Z : ZType').

Hint Rewrite
 spec_0 spec_1 spec_add spec_sub spec_pred spec_succ
 spec_mul spec_opp spec_of_Z spec_div spec_modulo
 spec_compare spec_eq_bool spec_max spec_min spec_abs spec_sgn
 : zsimpl.

Ltac zsimpl := autorewrite with zsimpl.
Ltac zcongruence := repeat red; intros; zsimpl; congruence.
Ltac zify := unfold eq, lt, le in *; zsimpl.

Instance eq_equiv : Equivalence eq.
Proof. unfold eq. firstorder. Qed.

Local Obligation Tactic := zcongruence.

Program Instance succ_wd : Proper (eq ==> eq) succ.
Program Instance pred_wd : Proper (eq ==> eq) pred.
Program Instance add_wd : Proper (eq ==> eq ==> eq) add.
Program Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
Program Instance mul_wd : Proper (eq ==> eq ==> eq) mul.

Theorem pred_succ : forall n, pred (succ n) == n.
Proof.
intros. zify. auto with zarith.
Qed.

Section Induction.

Variable A : Z.t -> Prop.
Hypothesis A_wd : Proper (eq==>iff) A.
Hypothesis A0 : A 0.
Hypothesis AS : forall n, A n <-> A (succ n).

Let B (z : Z) := A (of_Z z).

Lemma B0 : B 0.
Proof.
unfold B; simpl.
rewrite <- (A_wd 0); auto.
zify. auto.
Qed.

Lemma BS : forall z : Z, B z -> B (z + 1).
Proof.
intros z H.
unfold B in *. apply -> AS in H.
setoid_replace (of_Z (z + 1)) with (succ (of_Z z)); auto.
zify. auto.
Qed.

Lemma BP : forall z : Z, B z -> B (z - 1).
Proof.
intros z H.
unfold B in *. rewrite AS.
setoid_replace (succ (of_Z (z - 1))) with (of_Z z); auto.
zify. auto with zarith.
Qed.

Lemma B_holds : forall z : Z, B z.
Proof.
intros; destruct (Z_lt_le_dec 0 z).
apply natlike_ind; auto with zarith.
apply B0.
intros; apply BS; auto.
replace z with (-(-z))%Z in * by (auto with zarith).
remember (-z)%Z as z'.
pattern z'; apply natlike_ind.
apply B0.
intros; rewrite Zopp_succ; unfold Zpred; apply BP; auto.
subst z'; auto with zarith.
Qed.

Theorem bi_induction : forall n, A n.
Proof.
intro n. setoid_replace n with (of_Z (to_Z n)).
apply B_holds.
zify. auto.
Qed.

End Induction.

Theorem add_0_l : forall n, 0 + n == n.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m).
Proof.
intros. zify. auto with zarith.
Qed.

Theorem sub_0_r : forall n, n - 0 == n.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m).
Proof.
intros. zify. auto with zarith.
Qed.

Theorem mul_0_l : forall n, 0 * n == 0.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m.
Proof.
intros. zify. ring.
Qed.

(** Order *)

Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
 intros. zify. destruct (Zcompare_spec [x] [y]); auto.
Qed.

Definition eqb := eq_bool.

Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y.
Proof.
 intros. zify. symmetry. apply Zeq_is_eq_bool.
Qed.

Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare.
Proof.
intros x x' Hx y y' Hy. rewrite 2 spec_compare, Hx, Hy; intuition.
Qed.

Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
Proof.
intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition.
Qed.

Theorem lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
Proof.
intros. zify. omega.
Qed.

Theorem lt_irrefl : forall n, ~ n < n.
Proof.
intros. zify. omega.
Qed.

Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m.
Proof.
intros. zify. omega.
Qed.

Theorem min_l : forall n m, n <= m -> min n m == n.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem min_r : forall n m, m <= n -> min n m == m.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem max_l : forall n m, m <= n -> max n m == n.
Proof.
intros n m. zify. omega with *.
Qed.

Theorem max_r : forall n m, n <= m -> max n m == m.
Proof.
intros n m. zify. omega with *.
Qed.

(** Part specific to integers, not natural numbers *)

Program Instance opp_wd : Proper (eq ==> eq) opp.

Theorem succ_pred : forall n, succ (pred n) == n.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem opp_0 : - 0 == 0.
Proof.
intros. zify. auto with zarith.
Qed.

Theorem opp_succ : forall n, - (succ n) == pred (- n).
Proof.
intros. zify. auto with zarith.
Qed.

Theorem abs_eq : forall n, 0 <= n -> abs n == n.
Proof.
intros n. zify. omega with *.
Qed.

Theorem abs_neq : forall n, n <= 0 -> abs n == -n.
Proof.
intros n. zify. omega with *.
Qed.

Theorem sgn_null : forall n, n==0 -> sgn n == 0.
Proof.
intros n. zify. omega with *.
Qed.

Theorem sgn_pos : forall n, 0<n -> sgn n == succ 0.
Proof.
intros n. zify. omega with *.
Qed.

Theorem sgn_neg : forall n, n<0 -> sgn n == opp (succ 0).
Proof.
intros n. zify. omega with *.
Qed.

Program Instance div_wd : Proper (eq==>eq==>eq) div.
Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.

Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b).
Proof.
intros a b. zify. intros. apply Z_div_mod_eq_full; auto.
Qed.

Theorem mod_pos_bound :
 forall a b, 0 < b -> 0 <= modulo a b /\ modulo a b < b.
Proof.
intros a b. zify. intros. apply Z_mod_lt; auto with zarith.
Qed.

Theorem mod_neg_bound :
 forall a b, b < 0 -> b < modulo a b /\ modulo a b <= 0.
Proof.
intros a b. zify. intros. apply Z_mod_neg; auto with zarith.
Qed.

End ZTypeIsZAxioms.

Module ZType_ZAxioms (Z : ZType)
 <: ZAxiomsSig <: ZDivSig <: HasCompare Z <: HasEqBool Z <: HasMinMax Z
 := Z <+ ZTypeIsZAxioms.