summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/BigZ/BigZ.v
blob: 7c76011f21f947e4d6e51d0f80989db659121319 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

Require Export BigN.
Require Import ZProperties ZDivFloor ZSig ZSigZAxioms ZMake.

(** * [BigZ] : arbitrary large efficient integers.

    The following [BigZ] module regroups both the operations and
    all the abstract properties:

    - [ZMake.Make BigN] provides the operations and basic specs w.r.t. ZArith
    - [ZTypeIsZAxioms] shows (mainly) that these operations implement
      the interface [ZAxioms]
    - [ZProp] adds all generic properties derived from [ZAxioms]
    - [MinMax*Properties] provides properties of [min] and [max]

*)

Delimit Scope bigZ_scope with bigZ.

Module BigZ <: ZType <: OrderedTypeFull <: TotalOrder :=
 ZMake.Make BigN
 <+ ZTypeIsZAxioms
 <+ ZBasicProp [no inline] <+ ZExtraProp [no inline]
 <+ HasEqBool2Dec [no inline]
 <+ MinMaxLogicalProperties [no inline]
 <+ MinMaxDecProperties [no inline].

(** For precision concerning the above scope handling, see comment in BigN *)

(** Notations about [BigZ] *)

Local Open Scope bigZ_scope.

Notation bigZ := BigZ.t.
Bind Scope bigZ_scope with bigZ BigZ.t BigZ.t_.
Arguments BigZ.Pos _%bigN.
Arguments BigZ.Neg _%bigN.
Local Notation "0" := BigZ.zero : bigZ_scope.
Local Notation "1" := BigZ.one : bigZ_scope.
Local Notation "2" := BigZ.two : bigZ_scope.
Infix "+" := BigZ.add : bigZ_scope.
Infix "-" := BigZ.sub : bigZ_scope.
Notation "- x" := (BigZ.opp x) : bigZ_scope.
Infix "*" := BigZ.mul : bigZ_scope.
Infix "/" := BigZ.div : bigZ_scope.
Infix "^" := BigZ.pow : bigZ_scope.
Infix "?=" := BigZ.compare : bigZ_scope.
Infix "=?" := BigZ.eqb (at level 70, no associativity) : bigZ_scope.
Infix "<=?" := BigZ.leb (at level 70, no associativity) : bigZ_scope.
Infix "<?" := BigZ.ltb (at level 70, no associativity) : bigZ_scope.
Infix "==" := BigZ.eq (at level 70, no associativity) : bigZ_scope.
Notation "x != y" := (~x==y) (at level 70, no associativity) : bigZ_scope.
Infix "<" := BigZ.lt : bigZ_scope.
Infix "<=" := BigZ.le : bigZ_scope.
Notation "x > y" := (y < x) (only parsing) : bigZ_scope.
Notation "x >= y" := (y <= x) (only parsing) : bigZ_scope.
Notation "x < y < z" := (x<y /\ y<z) : bigZ_scope.
Notation "x < y <= z" := (x<y /\ y<=z) : bigZ_scope.
Notation "x <= y < z" := (x<=y /\ y<z) : bigZ_scope.
Notation "x <= y <= z" := (x<=y /\ y<=z) : bigZ_scope.
Notation "[ i ]" := (BigZ.to_Z i) : bigZ_scope.
Infix "mod" := BigZ.modulo (at level 40, no associativity) : bigZ_scope.
Infix "÷" := BigZ.quot (at level 40, left associativity) : bigZ_scope.

(** Some additional results about [BigZ] *)

Theorem spec_to_Z: forall n : bigZ,
  BigN.to_Z (BigZ.to_N n) = ((Z.sgn [n]) * [n])%Z.
Proof.
intros n; case n; simpl; intros p;
  generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
intros p1 H1; case H1; auto.
intros p1 H1; case H1; auto.
Qed.

Theorem spec_to_N n:
 ([n] = Z.sgn [n] * (BigN.to_Z (BigZ.to_N n)))%Z.
Proof.
case n; simpl; intros p;
  generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
intros p1 H1; case H1; auto.
intros p1 H1; case H1; auto.
Qed.

Theorem spec_to_Z_pos: forall n, (0 <= [n])%Z ->
  BigN.to_Z (BigZ.to_N n) = [n].
Proof.
intros n; case n; simpl; intros p;
  generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
intros p1 _ H1; case H1; auto.
intros p1 H1; case H1; auto.
Qed.

(** [BigZ] is a ring *)

Lemma BigZring :
 ring_theory 0 1 BigZ.add BigZ.mul BigZ.sub BigZ.opp BigZ.eq.
Proof.
constructor.
exact BigZ.add_0_l. exact BigZ.add_comm. exact BigZ.add_assoc.
exact BigZ.mul_1_l. exact BigZ.mul_comm. exact BigZ.mul_assoc.
exact BigZ.mul_add_distr_r.
symmetry. apply BigZ.add_opp_r.
exact BigZ.add_opp_diag_r.
Qed.

Lemma BigZeqb_correct : forall x y, (x =? y) = true -> x==y.
Proof. now apply BigZ.eqb_eq. Qed.

Definition BigZ_of_N n := BigZ.of_Z (Z.of_N n).

Lemma BigZpower : power_theory 1 BigZ.mul BigZ.eq BigZ_of_N BigZ.pow.
Proof.
constructor.
intros. unfold BigZ.eq, BigZ_of_N. rewrite BigZ.spec_pow, BigZ.spec_of_Z.
rewrite Zpower_theory.(rpow_pow_N).
destruct n; simpl. reflexivity.
induction p; simpl; intros; BigZ.zify; rewrite ?IHp; auto.
Qed.

Lemma BigZdiv : div_theory BigZ.eq BigZ.add BigZ.mul (@id _)
 (fun a b => if b =? 0 then (0,a) else BigZ.div_eucl a b).
Proof.
constructor. unfold id. intros a b.
BigZ.zify.
case Z.eqb_spec.
BigZ.zify. auto with zarith.
intros NEQ.
generalize (BigZ.spec_div_eucl a b).
generalize (Z_div_mod_full [a] [b] NEQ).
destruct BigZ.div_eucl as (q,r), Z.div_eucl as (q',r').
intros (EQ,_). injection 1 as EQr EQq.
BigZ.zify. rewrite EQr, EQq; auto.
Qed.

(** Detection of constants *)

Ltac isBigZcst t :=
 match t with
 | BigZ.Pos ?t => isBigNcst t
 | BigZ.Neg ?t => isBigNcst t
 | BigZ.zero => constr:(true)
 | BigZ.one => constr:(true)
 | BigZ.two => constr:(true)
 | BigZ.minus_one => constr:(true)
 | _ => constr:(false)
 end.

Ltac BigZcst t :=
 match isBigZcst t with
 | true => constr:(t)
 | false => constr:(NotConstant)
 end.

Ltac BigZ_to_N t :=
 match t with
 | BigZ.Pos ?t => BigN_to_N t
 | BigZ.zero => constr:(0%N)
 | BigZ.one => constr:(1%N)
 | BigZ.two => constr:(2%N)
 | _ => constr:(NotConstant)
 end.

(** Registration for the "ring" tactic *)

Add Ring BigZr : BigZring
 (decidable BigZeqb_correct,
  constants [BigZcst],
  power_tac BigZpower [BigZ_to_N],
  div BigZdiv).

Section TestRing.
Let test : forall x y, 1 + x*y + x^2 + 1 == 1*1 + 1 + (y + 1*x)*x.
Proof.
intros. ring_simplify. reflexivity.
Qed.
Let test' : forall x y, 1 + x*y + x^2 - 1*1 - y*x + 1*(-x)*x == 0.
Proof.
intros. ring_simplify. reflexivity.
Qed.
End TestRing.

(** [BigZ] also benefits from an "order" tactic *)

Ltac bigZ_order := BigZ.order.

Section TestOrder.
Let test : forall x y : bigZ, x<=y -> y<=x -> x==y.
Proof. bigZ_order. Qed.
End TestOrder.

(** We can use at least a bit of (r)omega by translating to [Z]. *)

Section TestOmega.
Let test : forall x y : bigZ, x<=y -> y<=x -> x==y.
Proof. intros x y. BigZ.zify. omega. Qed.
End TestOmega.

(** Todo: micromega *)