summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZMulOrder.v
blob: 320c8f355adae6bb3effaccaf4ca62a764c612f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Export ZAddOrder.

Module Type ZMulOrderProp (Import Z : ZAxiomsMiniSig').
Include ZAddOrderProp Z.

Theorem mul_lt_mono_nonpos :
  forall n m p q, m <= 0 -> n < m -> q <= 0 -> p < q ->  m * q < n * p.
Proof.
intros n m p q H1 H2 H3 H4.
apply le_lt_trans with (m * p).
apply mul_le_mono_nonpos_l; [assumption | now apply lt_le_incl].
apply -> mul_lt_mono_neg_r; [assumption | now apply lt_le_trans with q].
Qed.

Theorem mul_le_mono_nonpos :
  forall n m p q, m <= 0 -> n <= m -> q <= 0 -> p <= q ->  m * q <= n * p.
Proof.
intros n m p q H1 H2 H3 H4.
apply le_trans with (m * p).
now apply mul_le_mono_nonpos_l.
apply mul_le_mono_nonpos_r; [now apply le_trans with q | assumption].
Qed.

Theorem mul_nonpos_nonpos : forall n m, n <= 0 -> m <= 0 -> 0 <= n * m.
Proof.
intros n m H1 H2.
rewrite <- (mul_0_l m). now apply mul_le_mono_nonpos_r.
Qed.

Theorem mul_nonneg_nonpos : forall n m, 0 <= n -> m <= 0 -> n * m <= 0.
Proof.
intros n m H1 H2.
rewrite <- (mul_0_l m). now apply mul_le_mono_nonpos_r.
Qed.

Theorem mul_nonpos_nonneg : forall n m, n <= 0 -> 0 <= m -> n * m <= 0.
Proof.
intros; rewrite mul_comm; now apply mul_nonneg_nonpos.
Qed.

Notation mul_pos := lt_0_mul (only parsing).

Theorem lt_mul_0 :
  forall n m, n * m < 0 <-> n < 0 /\ m > 0 \/ n > 0 /\ m < 0.
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]];
[| rewrite H1 in H; rewrite mul_0_l in H; false_hyp H lt_irrefl |];
(destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]];
[| rewrite H2 in H; rewrite mul_0_r in H; false_hyp H lt_irrefl |]);
try (left; now split); try (right; now split).
assert (H3 : n * m > 0) by now apply mul_neg_neg.
exfalso; now apply (lt_asymm (n * m) 0).
assert (H3 : n * m > 0) by now apply mul_pos_pos.
exfalso; now apply (lt_asymm (n * m) 0).
now apply mul_neg_pos. now apply mul_pos_neg.
Qed.

Notation mul_neg := lt_mul_0 (only parsing).

Theorem le_0_mul :
  forall n m, 0 <= n * m -> 0 <= n /\ 0 <= m \/ n <= 0 /\ m <= 0.
Proof.
assert (R : forall n, 0 == n <-> n == 0) by (intros; split; apply eq_sym).
intros n m. repeat rewrite lt_eq_cases. repeat rewrite R.
rewrite lt_0_mul, eq_mul_0.
pose proof (lt_trichotomy n 0); pose proof (lt_trichotomy m 0). tauto.
Qed.

Notation mul_nonneg := le_0_mul (only parsing).

Theorem le_mul_0 :
  forall n m, n * m <= 0 -> 0 <= n /\ m <= 0 \/ n <= 0 /\ 0 <= m.
Proof.
assert (R : forall n, 0 == n <-> n == 0) by (intros; split; apply eq_sym).
intros n m. repeat rewrite lt_eq_cases. repeat rewrite R.
rewrite lt_mul_0, eq_mul_0.
pose proof (lt_trichotomy n 0); pose proof (lt_trichotomy m 0). tauto.
Qed.

Notation mul_nonpos := le_mul_0 (only parsing).

Notation le_0_square := square_nonneg (only parsing).

Theorem nlt_square_0 : forall n, ~ n * n < 0.
Proof.
intros n H. apply lt_nge in H. apply H. apply square_nonneg.
Qed.

Theorem square_lt_mono_nonpos : forall n m, n <= 0 -> m < n -> n * n < m * m.
Proof.
intros n m H1 H2. now apply mul_lt_mono_nonpos.
Qed.

Theorem square_le_mono_nonpos : forall n m, n <= 0 -> m <= n -> n * n <= m * m.
Proof.
intros n m H1 H2. now apply mul_le_mono_nonpos.
Qed.

Theorem square_lt_simpl_nonpos : forall n m, m <= 0 -> n * n < m * m -> m < n.
Proof.
intros n m H1 H2. destruct (le_gt_cases n 0); [|order].
destruct (lt_ge_cases m n) as [LE|GT]; trivial.
apply square_le_mono_nonpos in GT; order.
Qed.

Theorem square_le_simpl_nonpos : forall n m, m <= 0 -> n * n <= m * m -> m <= n.
Proof.
intros n m H1 H2. destruct (le_gt_cases n 0); [|order].
destruct (le_gt_cases m n) as [LE|GT]; trivial.
apply square_lt_mono_nonpos in GT; order.
Qed.

Theorem lt_1_mul_neg : forall n m, n < -1 -> m < 0 -> 1 < n * m.
Proof.
intros n m H1 H2. apply (mul_lt_mono_neg_r m) in H1.
apply opp_pos_neg in H2. rewrite mul_opp_l, mul_1_l in H1.
now apply lt_1_l with (- m).
assumption.
Qed.

Theorem lt_mul_m1_neg : forall n m, 1 < n -> m < 0 -> n * m < -1.
Proof.
intros n m H1 H2. apply (mul_lt_mono_neg_r m) in H1.
rewrite mul_1_l in H1. now apply lt_m1_r with m.
assumption.
Qed.

Theorem lt_mul_m1_pos : forall n m, n < -1 -> 0 < m -> n * m < -1.
Proof.
intros n m H1 H2. apply (mul_lt_mono_pos_r m) in H1.
rewrite mul_opp_l, mul_1_l in H1.
apply opp_neg_pos in H2. now apply lt_m1_r with (- m).
assumption.
Qed.

Theorem lt_1_mul_l : forall n m, 1 < n ->
 n * m < -1 \/ n * m == 0 \/ 1 < n * m.
Proof.
intros n m H; destruct (lt_trichotomy m 0) as [H1 | [H1 | H1]].
left. now apply lt_mul_m1_neg.
right; left; now rewrite H1, mul_0_r.
right; right; now apply lt_1_mul_pos.
Qed.

Theorem lt_m1_mul_r : forall n m, n < -1 ->
 n * m < -1 \/ n * m == 0 \/ 1 < n * m.
Proof.
intros n m H; destruct (lt_trichotomy m 0) as [H1 | [H1 | H1]].
right; right. now apply lt_1_mul_neg.
right; left; now rewrite H1, mul_0_r.
left. now apply lt_mul_m1_pos.
Qed.

Theorem eq_mul_1 : forall n m, n * m == 1 -> n == 1 \/ n == -1.
Proof.
assert (F := lt_m1_0).
zero_pos_neg n.
(* n = 0 *)
intros m. nzsimpl. now left.
(* 0 < n, proving P n /\ P (-n) *)
intros n Hn. rewrite <- le_succ_l, <- one_succ in Hn.
le_elim Hn; split; intros m H.
destruct (lt_1_mul_l n m) as [|[|]]; order'.
rewrite mul_opp_l, eq_opp_l in H. destruct (lt_1_mul_l n m) as [|[|]]; order'.
now left.
intros; right. now f_equiv.
Qed.

Theorem lt_mul_diag_l : forall n m, n < 0 -> (1 < m <-> n * m < n).
Proof.
intros n m H. stepr (n * m < n * 1) by now rewrite mul_1_r.
now apply mul_lt_mono_neg_l.
Qed.

Theorem lt_mul_diag_r : forall n m, 0 < n -> (1 < m <-> n < n * m).
Proof.
intros n m H. stepr (n * 1 < n * m) by now rewrite mul_1_r.
now apply mul_lt_mono_pos_l.
Qed.

Theorem le_mul_diag_l : forall n m, n < 0 -> (1 <= m <-> n * m <= n).
Proof.
intros n m H. stepr (n * m <= n * 1) by now rewrite mul_1_r.
now apply mul_le_mono_neg_l.
Qed.

Theorem le_mul_diag_r : forall n m, 0 < n -> (1 <= m <-> n <= n * m).
Proof.
intros n m H. stepr (n * 1 <= n * m) by now rewrite mul_1_r.
now apply mul_le_mono_pos_l.
Qed.

Theorem lt_mul_r : forall n m p, 0 < n -> 1 < p -> n < m -> n < m * p.
Proof.
intros. stepl (n * 1) by now rewrite mul_1_r.
apply mul_lt_mono_nonneg.
now apply lt_le_incl. assumption. apply le_0_1. assumption.
Qed.

(** Alternative name : *)

Definition mul_eq_1 := eq_mul_1.

End ZMulOrderProp.