summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZGcd.v
blob: 30adaeb4b189a9edcb31b7ba6b83f069646828c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Properties of the greatest common divisor *)

Require Import ZAxioms ZMulOrder ZSgnAbs NZGcd.

Module Type ZGcdProp
 (Import A : ZAxiomsSig')
 (Import B : ZMulOrderProp A)
 (Import C : ZSgnAbsProp A B).

 Include NZGcdProp A A B.

(** Results concerning divisibility*)

Lemma divide_opp_l : forall n m, (-n | m) <-> (n | m).
Proof.
 intros n m. split; intros (p,Hp); exists (-p); rewrite Hp.
  now rewrite mul_opp_l, mul_opp_r.
  now rewrite mul_opp_opp.
Qed.

Lemma divide_opp_r : forall n m, (n | -m) <-> (n | m).
Proof.
 intros n m. split; intros (p,Hp); exists (-p).
  now rewrite mul_opp_l, <- Hp, opp_involutive.
  now rewrite Hp, mul_opp_l.
Qed.

Lemma divide_abs_l : forall n m, (abs n | m) <-> (n | m).
Proof.
 intros n m. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
 easy. apply divide_opp_l.
Qed.

Lemma divide_abs_r : forall n m, (n | abs m) <-> (n | m).
Proof.
 intros n m. destruct (abs_eq_or_opp m) as [H|H]; rewrite H.
 easy. apply divide_opp_r.
Qed.

Lemma divide_1_r_abs : forall n, (n | 1) -> abs n == 1.
Proof.
 intros n Hn. apply divide_1_r_nonneg. apply abs_nonneg.
 now apply divide_abs_l.
Qed.

Lemma divide_1_r : forall n, (n | 1) -> n==1 \/ n==-1.
Proof.
 intros n (m,H). rewrite mul_comm in H. now apply eq_mul_1 with m.
Qed.

Lemma divide_antisym_abs : forall n m,
 (n | m) -> (m | n) -> abs n == abs m.
Proof.
 intros. apply divide_antisym_nonneg; try apply abs_nonneg.
 now apply divide_abs_l, divide_abs_r.
 now apply divide_abs_l, divide_abs_r.
Qed.

Lemma divide_antisym : forall n m,
 (n | m) -> (m | n) -> n == m \/ n == -m.
Proof.
 intros. now apply abs_eq_cases, divide_antisym_abs.
Qed.

Lemma divide_sub_r : forall n m p, (n | m) -> (n | p) -> (n | m - p).
Proof.
 intros n m p H H'. rewrite <- add_opp_r.
 apply divide_add_r; trivial. now apply divide_opp_r.
Qed.

Lemma divide_add_cancel_r : forall n m p, (n | m) -> (n | m + p) -> (n | p).
Proof.
 intros n m p H H'. rewrite <- (add_simpl_l m p). now apply divide_sub_r.
Qed.

(** Properties of gcd *)

Lemma gcd_opp_l : forall n m, gcd (-n) m == gcd n m.
Proof.
 intros. apply gcd_unique_alt; try apply gcd_nonneg.
 intros. rewrite divide_opp_r. apply gcd_divide_iff.
Qed.

Lemma gcd_opp_r : forall n m, gcd n (-m) == gcd n m.
Proof.
 intros. now rewrite gcd_comm, gcd_opp_l, gcd_comm.
Qed.

Lemma gcd_abs_l : forall n m, gcd (abs n) m == gcd n m.
Proof.
 intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H.
 easy. apply gcd_opp_l.
Qed.

Lemma gcd_abs_r : forall n m, gcd n (abs m) == gcd n m.
Proof.
 intros. now rewrite gcd_comm, gcd_abs_l, gcd_comm.
Qed.

Lemma gcd_0_l : forall n, gcd 0 n == abs n.
Proof.
 intros. rewrite <- gcd_abs_r. apply gcd_0_l_nonneg, abs_nonneg.
Qed.

Lemma gcd_0_r : forall n, gcd n 0 == abs n.
Proof.
 intros. now rewrite gcd_comm, gcd_0_l.
Qed.

Lemma gcd_diag : forall n, gcd n n == abs n.
Proof.
 intros. rewrite <- gcd_abs_l, <- gcd_abs_r.
 apply gcd_diag_nonneg, abs_nonneg.
Qed.

Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m.
Proof.
 intros. apply gcd_unique_alt; try apply gcd_nonneg.
 intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial.
 apply divide_add_r; trivial. now apply divide_mul_r.
 apply divide_add_cancel_r with (p*n); trivial.
 now apply divide_mul_r. now rewrite add_comm.
Qed.

Lemma gcd_add_diag_r : forall n m, gcd n (m+n) == gcd n m.
Proof.
 intros n m. rewrite <- (mul_1_l n) at 2. apply gcd_add_mult_diag_r.
Qed.

Lemma gcd_sub_diag_r : forall n m, gcd n (m-n) == gcd n m.
Proof.
 intros n m. rewrite <- (mul_1_l n) at 2.
 rewrite <- add_opp_r, <- mul_opp_l. apply gcd_add_mult_diag_r.
Qed.

Definition Bezout n m p := exists a b, a*n + b*m == p.

Instance Bezout_wd : Proper (eq==>eq==>eq==>iff) Bezout.
Proof.
 unfold Bezout. intros x x' Hx y y' Hy z z' Hz.
 setoid_rewrite Hx. setoid_rewrite Hy. now setoid_rewrite Hz.
Qed.

Lemma bezout_1_gcd : forall n m, Bezout n m 1 -> gcd n m == 1.
Proof.
 intros n m (q & r & H).
 apply gcd_unique; trivial using divide_1_l, le_0_1.
 intros p Hn Hm.
 rewrite <- H. apply divide_add_r; now apply divide_mul_r.
Qed.

Lemma gcd_bezout : forall n m p, gcd n m == p -> Bezout n m p.
Proof.
 (* First, a version restricted to natural numbers *)
 assert (aux : forall n, 0<=n -> forall m, 0<=m -> Bezout n m (gcd n m)).
  intros n Hn; pattern n.
  apply strong_right_induction with (z:=0); trivial.
  unfold Bezout. solve_proper.
  clear n Hn. intros n Hn IHn.
  apply le_lteq in Hn; destruct Hn as [Hn|Hn].
  intros m Hm; pattern m.
  apply strong_right_induction with (z:=0); trivial.
  unfold Bezout. solve_proper.
  clear m Hm. intros m Hm IHm.
  destruct (lt_trichotomy n m) as [LT|[EQ|LT]].
  (* n < m *)
  destruct (IHm (m-n)) as (a & b & EQ).
  apply sub_nonneg; order.
  now apply lt_sub_pos.
  exists (a-b). exists b.
  rewrite gcd_sub_diag_r in EQ. rewrite <- EQ.
  rewrite mul_sub_distr_r, mul_sub_distr_l.
  now rewrite add_sub_assoc, add_sub_swap.
  (* n = m *)
  rewrite EQ. rewrite gcd_diag_nonneg; trivial.
  exists 1. exists 0. now nzsimpl.
  (* m < n *)
  destruct (IHn m Hm LT n) as (a & b & EQ). order.
  exists b. exists a. now rewrite gcd_comm, <- EQ, add_comm.
  (* n = 0 *)
  intros m Hm. rewrite <- Hn, gcd_0_l_nonneg; trivial.
  exists 0. exists 1. now nzsimpl.
 (* Then we relax the positivity condition on n *)
 assert (aux' : forall n m, 0<=m -> Bezout n m (gcd n m)).
  intros n m Hm.
  destruct (le_ge_cases 0 n). now apply aux.
  assert (Hn' : 0 <= -n) by now apply opp_nonneg_nonpos.
  destruct (aux (-n) Hn' m Hm) as (a & b & EQ).
  exists (-a). exists b. now rewrite <- gcd_opp_l, <- EQ, mul_opp_r, mul_opp_l.
 (* And finally we do the same for m *)
 intros n m p Hp. rewrite <- Hp; clear Hp.
 destruct (le_ge_cases 0 m). now apply aux'.
 assert (Hm' : 0 <= -m) by now apply opp_nonneg_nonpos.
 destruct (aux' n (-m) Hm') as (a & b & EQ).
 exists a. exists (-b). now rewrite <- gcd_opp_r, <- EQ, mul_opp_r, mul_opp_l.
Qed.

Lemma gcd_mul_mono_l :
  forall n m p, gcd (p * n) (p * m) == abs p * gcd n m.
Proof.
 intros n m p.
 apply gcd_unique.
 apply mul_nonneg_nonneg; trivial using gcd_nonneg, abs_nonneg.
 destruct (gcd_divide_l n m) as (q,Hq).
 rewrite Hq at 2. rewrite mul_assoc. apply mul_divide_mono_r.
 rewrite <- (abs_sgn p) at 2. rewrite <- mul_assoc. apply divide_factor_l.
 destruct (gcd_divide_r n m) as (q,Hq).
 rewrite Hq at 2. rewrite mul_assoc. apply mul_divide_mono_r.
 rewrite <- (abs_sgn p) at 2. rewrite <- mul_assoc. apply divide_factor_l.
 intros q H H'.
 destruct (gcd_bezout n m (gcd n m) (eq_refl _)) as (a & b & EQ).
 rewrite <- EQ, <- sgn_abs, mul_add_distr_l. apply divide_add_r.
 rewrite mul_shuffle2. now apply divide_mul_l.
 rewrite mul_shuffle2. now apply divide_mul_l.
Qed.

Lemma gcd_mul_mono_l_nonneg :
 forall n m p, 0<=p -> gcd (p*n) (p*m) == p * gcd n m.
Proof.
 intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_l.
Qed.

Lemma gcd_mul_mono_r :
 forall n m p, gcd (n * p) (m * p) == gcd n m * abs p.
Proof.
 intros n m p. now rewrite !(mul_comm _ p), gcd_mul_mono_l, mul_comm.
Qed.

Lemma gcd_mul_mono_r_nonneg :
 forall n m p, 0<=p -> gcd (n*p) (m*p) == gcd n m * p.
Proof.
 intros. rewrite <- (abs_eq p) at 3; trivial. apply gcd_mul_mono_r.
Qed.

Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p).
Proof.
 intros n m p H G.
 destruct (gcd_bezout n m 1 G) as (a & b & EQ).
 rewrite <- (mul_1_l p), <- EQ, mul_add_distr_r.
 apply divide_add_r. rewrite mul_shuffle0. apply divide_factor_r.
 rewrite <- mul_assoc. now apply divide_mul_r.
Qed.

Lemma divide_mul_split : forall n m p, n ~= 0 -> (n | m * p) ->
 exists q r, n == q*r /\ (q | m) /\ (r | p).
Proof.
 intros n m p Hn H.
 assert (G := gcd_nonneg n m).
 apply le_lteq in G; destruct G as [G|G].
 destruct (gcd_divide_l n m) as (q,Hq).
 exists (gcd n m). exists q.
 split. now rewrite mul_comm.
 split. apply gcd_divide_r.
 destruct (gcd_divide_r n m) as (r,Hr).
 rewrite Hr in H. rewrite Hq in H at 1.
 rewrite mul_shuffle0 in H. apply mul_divide_cancel_r in H; [|order].
 apply gauss with r; trivial.
 apply mul_cancel_r with (gcd n m); [order|].
 rewrite mul_1_l.
 rewrite <- gcd_mul_mono_r_nonneg, <- Hq, <- Hr; order.
 symmetry in G. apply gcd_eq_0 in G. destruct G as (Hn',_); order.
Qed.

(** TODO : more about rel_prime (i.e. gcd == 1), about prime ... *)

End ZGcdProp.