summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZBits.v
blob: 2da4452819461eb2f21d098432ce0055e00f4e9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import
 Bool ZAxioms ZMulOrder ZPow ZDivFloor ZSgnAbs ZParity NZLog.

(** Derived properties of bitwise operations *)

Module Type ZBitsProp
 (Import A : ZAxiomsSig')
 (Import B : ZMulOrderProp A)
 (Import C : ZParityProp A B)
 (Import D : ZSgnAbsProp A B)
 (Import E : ZPowProp A B C D)
 (Import F : ZDivProp A B D)
 (Import G : NZLog2Prop A A A B E).

Include BoolEqualityFacts A.

Ltac order_nz := try apply pow_nonzero; order'.
Ltac order_pos' := try apply abs_nonneg; order_pos.
Hint Rewrite div_0_l mod_0_l div_1_r mod_1_r : nz.

(** Some properties of power and division *)

Lemma pow_sub_r : forall a b c, a~=0 -> 0<=c<=b -> a^(b-c) == a^b / a^c.
Proof.
 intros a b c Ha (H,H'). rewrite <- (sub_simpl_r b c) at 2.
 rewrite pow_add_r; trivial.
 rewrite div_mul. reflexivity.
 now apply pow_nonzero.
 now apply le_0_sub.
Qed.

Lemma pow_div_l : forall a b c, b~=0 -> 0<=c -> a mod b == 0 ->
 (a/b)^c == a^c / b^c.
Proof.
 intros a b c Hb Hc H. rewrite (div_mod a b Hb) at 2.
 rewrite H, add_0_r, pow_mul_l, mul_comm, div_mul. reflexivity.
 now apply pow_nonzero.
Qed.

(** An injection from bits [true] and [false] to numbers 1 and 0.
    We declare it as a (local) coercion for shorter statements. *)

Definition b2z (b:bool) := if b then 1 else 0.
Local Coercion b2z : bool >-> t.

Instance b2z_wd : Proper (Logic.eq ==> eq) b2z := _.

Lemma exists_div2 a : exists a' (b:bool), a == 2*a' + b.
Proof.
 elim (Even_or_Odd a); [intros (a',H)| intros (a',H)].
 exists a'. exists false. now nzsimpl.
 exists a'. exists true. now simpl.
Qed.

(** We can compact [testbit_odd_0] [testbit_even_0]
    [testbit_even_succ] [testbit_odd_succ] in only two lemmas. *)

Lemma testbit_0_r a (b:bool) : testbit (2*a+b) 0 = b.
Proof.
 destruct b; simpl; rewrite ?add_0_r.
 apply testbit_odd_0.
 apply testbit_even_0.
Qed.

Lemma testbit_succ_r a (b:bool) n : 0<=n ->
 testbit (2*a+b) (succ n) = testbit a n.
Proof.
 destruct b; simpl; rewrite ?add_0_r.
 now apply testbit_odd_succ.
 now apply testbit_even_succ.
Qed.

(** Alternative caracterisations of [testbit] *)

(** This concise equation could have been taken as specification
   for testbit in the interface, but it would have been hard to
   implement with little initial knowledge about div and mod *)

Lemma testbit_spec' a n : 0<=n -> a.[n] == (a / 2^n) mod 2.
Proof.
 intro Hn. revert a. apply le_ind with (4:=Hn). 
   solve_proper.
 intros a. nzsimpl.
 destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
 rewrite testbit_0_r. apply mod_unique with a'; trivial.
 left. destruct b; split; simpl; order'.
 clear n Hn. intros n Hn IH a.
 destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
 rewrite testbit_succ_r, IH by trivial. f_equiv.
 rewrite pow_succ_r, <- div_div by order_pos. f_equiv.
 apply div_unique with b; trivial.
 left. destruct b; split; simpl; order'.
Qed.

(** This caracterisation that uses only basic operations and
   power was initially taken as specification for testbit.
   We describe [a] as having a low part and a high part, with
   the corresponding bit in the middle. This caracterisation
   is moderatly complex to implement, but also moderately
   usable... *)

Lemma testbit_spec a n : 0<=n ->
  exists l h, 0<=l<2^n /\ a == l + (a.[n] + 2*h)*2^n.
Proof.
 intro Hn. exists (a mod 2^n). exists (a / 2^n / 2). split.
 apply mod_pos_bound; order_pos.
 rewrite add_comm, mul_comm, (add_comm a.[n]).
 rewrite (div_mod a (2^n)) at 1 by order_nz. do 2 f_equiv.
 rewrite testbit_spec' by trivial. apply div_mod. order'.
Qed.

Lemma testbit_true : forall a n, 0<=n ->
 (a.[n] = true <-> (a / 2^n) mod 2 == 1).
Proof.
 intros a n Hn.
 rewrite <- testbit_spec' by trivial.
 destruct a.[n]; split; simpl; now try order'.
Qed.

Lemma testbit_false : forall a n, 0<=n ->
 (a.[n] = false <-> (a / 2^n) mod 2 == 0).
Proof.
 intros a n Hn.
 rewrite <- testbit_spec' by trivial.
 destruct a.[n]; split; simpl; now try order'.
Qed.

Lemma testbit_eqb : forall a n, 0<=n ->
 a.[n] = eqb ((a / 2^n) mod 2) 1.
Proof.
 intros a n Hn.
 apply eq_true_iff_eq. now rewrite testbit_true, eqb_eq.
Qed.

(** Results about the injection [b2z] *)

Lemma b2z_inj : forall (a0 b0:bool), a0 == b0 -> a0 = b0.
Proof.
 intros [|] [|]; simpl; trivial; order'.
Qed.

Lemma add_b2z_double_div2 : forall (a0:bool) a, (a0+2*a)/2 == a.
Proof.
 intros a0 a. rewrite mul_comm, div_add by order'.
 now rewrite div_small, add_0_l by (destruct a0; split; simpl; order').
Qed.

Lemma add_b2z_double_bit0 : forall (a0:bool) a, (a0+2*a).[0] = a0.
Proof.
 intros a0 a. apply b2z_inj.
 rewrite testbit_spec' by order.
 nzsimpl. rewrite mul_comm, mod_add by order'.
 now rewrite mod_small by (destruct a0; split; simpl; order').
Qed.

Lemma b2z_div2 : forall (a0:bool), a0/2 == 0.
Proof.
 intros a0. rewrite <- (add_b2z_double_div2 a0 0). now nzsimpl.
Qed.

Lemma b2z_bit0 : forall (a0:bool), a0.[0] = a0.
Proof.
 intros a0. rewrite <- (add_b2z_double_bit0 a0 0) at 2. now nzsimpl.
Qed.

(** The specification of testbit by low and high parts is complete *)

Lemma testbit_unique : forall a n (a0:bool) l h,
 0<=l<2^n -> a == l + (a0 + 2*h)*2^n -> a.[n] = a0.
Proof.
 intros a n a0 l h Hl EQ.
 assert (0<=n).
  destruct (le_gt_cases 0 n) as [Hn|Hn]; trivial.
  rewrite pow_neg_r in Hl by trivial. destruct Hl; order.
 apply b2z_inj. rewrite testbit_spec' by trivial.
 symmetry. apply mod_unique with h.
 left; destruct a0; simpl; split; order'.
 symmetry. apply div_unique with l.
 now left.
 now rewrite add_comm, (add_comm _ a0), mul_comm.
Qed.

(** All bits of number 0 are 0 *)

Lemma bits_0 : forall n, 0.[n] = false.
Proof.
 intros n.
 destruct (le_gt_cases 0 n).
 apply testbit_false; trivial. nzsimpl; order_nz.
 now apply testbit_neg_r.
Qed.

(** For negative numbers, we are actually doing two's complement *)

Lemma bits_opp : forall a n, 0<=n -> (-a).[n] = negb (P a).[n].
Proof.
 intros a n Hn.
 destruct (testbit_spec (-a) n Hn) as (l & h & Hl & EQ).
 fold (b2z (-a).[n]) in EQ.
 apply negb_sym.
 apply testbit_unique with (2^n-l-1) (-h-1).
 split.
 apply lt_succ_r. rewrite sub_1_r, succ_pred. now apply lt_0_sub.
 apply le_succ_l. rewrite sub_1_r, succ_pred. apply le_sub_le_add_r.
 rewrite <- (add_0_r (2^n)) at 1. now apply add_le_mono_l.
 rewrite <- add_sub_swap, sub_1_r. f_equiv.
 apply opp_inj. rewrite opp_add_distr, opp_sub_distr.
 rewrite (add_comm _ l), <- add_assoc.
 rewrite EQ at 1. apply add_cancel_l.
 rewrite <- opp_add_distr.
 rewrite <- (mul_1_l (2^n)) at 2. rewrite <- mul_add_distr_r.
 rewrite <- mul_opp_l.
 f_equiv.
 rewrite !opp_add_distr.
 rewrite <- mul_opp_r.
 rewrite opp_sub_distr, opp_involutive.
 rewrite (add_comm h).
 rewrite mul_add_distr_l.
 rewrite !add_assoc.
 apply add_cancel_r.
 rewrite mul_1_r.
 rewrite add_comm, add_assoc, !add_opp_r, sub_1_r, two_succ, pred_succ.
 destruct (-a).[n]; simpl. now rewrite sub_0_r. now nzsimpl'.
Qed.

(** All bits of number (-1) are 1 *)

Lemma bits_m1 : forall n, 0<=n -> (-1).[n] = true.
Proof.
 intros. now rewrite bits_opp, one_succ, pred_succ, bits_0.
Qed.

(** Various ways to refer to the lowest bit of a number *)

Lemma bit0_odd : forall a, a.[0] = odd a.
Proof.
 intros. symmetry.
 destruct (exists_div2 a) as (a' & b & EQ).
 rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2.
 destruct b; simpl; apply odd_1 || apply odd_0.
Qed.

Lemma bit0_eqb : forall a, a.[0] = eqb (a mod 2) 1.
Proof.
 intros a. rewrite testbit_eqb by order. now nzsimpl.
Qed.

Lemma bit0_mod : forall a, a.[0] == a mod 2.
Proof.
 intros a. rewrite testbit_spec' by order. now nzsimpl.
Qed.

(** Hence testing a bit is equivalent to shifting and testing parity *)

Lemma testbit_odd : forall a n, a.[n] = odd (a>>n).
Proof.
 intros. now rewrite <- bit0_odd, shiftr_spec, add_0_l.
Qed.

(** [log2] gives the highest nonzero bit of positive numbers *)

Lemma bit_log2 : forall a, 0<a -> a.[log2 a] = true.
Proof.
 intros a Ha.
 assert (Ha' := log2_nonneg a).
 destruct (log2_spec_alt a Ha) as (r & EQ & Hr).
 rewrite EQ at 1.
 rewrite testbit_true, add_comm by trivial.
 rewrite <- (mul_1_l (2^log2 a)) at 1.
 rewrite div_add by order_nz.
 rewrite div_small; trivial.
 rewrite add_0_l. apply mod_small. split; order'.
Qed.

Lemma bits_above_log2 : forall a n, 0<=a -> log2 a < n ->
 a.[n] = false.
Proof.
 intros a n Ha H.
 assert (Hn : 0<=n).
  transitivity (log2 a). apply log2_nonneg. order'.
 rewrite testbit_false by trivial.
 rewrite div_small. nzsimpl; order'.
 split. order. apply log2_lt_cancel. now rewrite log2_pow2.
Qed.

(** Hence the number of bits of [a] is [1+log2 a]
    (see [Pos.size_nat] and [Pos.size]).
*)

(** For negative numbers, things are the other ways around:
    log2 gives the highest zero bit (for numbers below -1).
*)

Lemma bit_log2_neg : forall a, a < -1 -> a.[log2 (P (-a))] = false.
Proof.
 intros a Ha.
 rewrite <- (opp_involutive a) at 1.
 rewrite bits_opp.
 apply negb_false_iff.
 apply bit_log2.
 apply opp_lt_mono in Ha. rewrite opp_involutive in Ha.
 apply lt_succ_lt_pred. now rewrite <- one_succ.
 apply log2_nonneg.
Qed.

Lemma bits_above_log2_neg : forall a n, a < 0 -> log2 (P (-a)) < n ->
 a.[n] = true.
Proof.
 intros a n Ha H.
 assert (Hn : 0<=n).
  transitivity (log2 (P (-a))). apply log2_nonneg. order'.
 rewrite <- (opp_involutive a), bits_opp, negb_true_iff by trivial.
 apply bits_above_log2; trivial.
 now rewrite <- opp_succ, opp_nonneg_nonpos, le_succ_l.
Qed.

(** Accesing a high enough bit of a number gives its sign *)

Lemma bits_iff_nonneg : forall a n, log2 (abs a) < n ->
 (0<=a <-> a.[n] = false).
Proof.
 intros a n Hn. split; intros H.
 rewrite abs_eq in Hn; trivial. now apply bits_above_log2.
 destruct (le_gt_cases 0 a); trivial.
 rewrite abs_neq in Hn by order.
 rewrite bits_above_log2_neg in H; try easy.
 apply le_lt_trans with (log2 (-a)); trivial.
 apply log2_le_mono. apply le_pred_l.
Qed.

Lemma bits_iff_nonneg' : forall a,
 0<=a <-> a.[S (log2 (abs a))] = false.
Proof.
 intros. apply bits_iff_nonneg. apply lt_succ_diag_r.
Qed.

Lemma bits_iff_nonneg_ex : forall a,
 0<=a <-> (exists k, forall m, k<m -> a.[m] = false).
Proof.
 intros a. split.
 intros Ha. exists (log2 a). intros m Hm. now apply bits_above_log2.
 intros (k,Hk). destruct (le_gt_cases k (log2 (abs a))).
 now apply bits_iff_nonneg', Hk, lt_succ_r.
 apply (bits_iff_nonneg a (S k)).
 now apply lt_succ_r, lt_le_incl.
 apply Hk. apply lt_succ_diag_r.
Qed.

Lemma bits_iff_neg : forall a n, log2 (abs a) < n ->
 (a<0 <-> a.[n] = true).
Proof.
 intros a n Hn.
 now rewrite lt_nge, <- not_false_iff_true, (bits_iff_nonneg a n).
Qed.

Lemma bits_iff_neg' : forall a, a<0 <-> a.[S (log2 (abs a))] = true.
Proof.
 intros. apply bits_iff_neg. apply lt_succ_diag_r.
Qed.

Lemma bits_iff_neg_ex : forall a,
 a<0 <-> (exists k, forall m, k<m -> a.[m] = true).
Proof.
 intros a. split.
 intros Ha. exists (log2 (P (-a))). intros m Hm. now apply bits_above_log2_neg.
 intros (k,Hk). destruct (le_gt_cases k (log2 (abs a))).
 now apply bits_iff_neg', Hk, lt_succ_r.
 apply (bits_iff_neg a (S k)).
 now apply lt_succ_r, lt_le_incl.
 apply Hk. apply lt_succ_diag_r.
Qed.

(** Testing bits after division or multiplication by a power of two *)

Lemma div2_bits : forall a n, 0<=n -> (a/2).[n] = a.[S n].
Proof.
 intros a n Hn.
 apply eq_true_iff_eq. rewrite 2 testbit_true by order_pos.
 rewrite pow_succ_r by trivial.
 now rewrite div_div by order_pos.
Qed.

Lemma div_pow2_bits : forall a n m, 0<=n -> 0<=m -> (a/2^n).[m] = a.[m+n].
Proof.
 intros a n m Hn. revert a m. apply le_ind with (4:=Hn).
 solve_proper.
 intros a m Hm. now nzsimpl.
 clear n Hn. intros n Hn IH a m Hm. nzsimpl; trivial.
 rewrite <- div_div by order_pos.
 now rewrite IH, div2_bits by order_pos.
Qed.

Lemma double_bits_succ : forall a n, (2*a).[S n] = a.[n].
Proof.
 intros a n.
 destruct (le_gt_cases 0 n) as [Hn|Hn].
 now rewrite <- div2_bits, mul_comm, div_mul by order'.
 rewrite (testbit_neg_r a n Hn).
 apply le_succ_l in Hn. le_elim Hn.
 now rewrite testbit_neg_r.
 now rewrite Hn, bit0_odd, odd_mul, odd_2.
Qed.

Lemma double_bits : forall a n, (2*a).[n] = a.[P n].
Proof.
 intros a n. rewrite <- (succ_pred n) at 1. apply double_bits_succ.
Qed.

Lemma mul_pow2_bits_add : forall a n m, 0<=n -> (a*2^n).[n+m] = a.[m].
Proof.
 intros a n m Hn. revert a m. apply le_ind with (4:=Hn).
 solve_proper.
 intros a m. now nzsimpl.
 clear n Hn. intros n Hn IH a m. nzsimpl; trivial.
 rewrite mul_assoc, (mul_comm _ 2), <- mul_assoc.
 now rewrite double_bits_succ.
Qed.

Lemma mul_pow2_bits : forall a n m, 0<=n -> (a*2^n).[m] = a.[m-n].
Proof.
 intros.
 rewrite <- (add_simpl_r m n) at 1. rewrite add_sub_swap, add_comm.
 now apply mul_pow2_bits_add.
Qed.

Lemma mul_pow2_bits_low : forall a n m, m<n -> (a*2^n).[m] = false.
Proof.
 intros.
 destruct (le_gt_cases 0 n).
 rewrite mul_pow2_bits by trivial.
 apply testbit_neg_r. now apply lt_sub_0.
 now rewrite pow_neg_r, mul_0_r, bits_0.
Qed.

(** Selecting the low part of a number can be done by a modulo *)

Lemma mod_pow2_bits_high : forall a n m, 0<=n<=m ->
 (a mod 2^n).[m] = false.
Proof.
 intros a n m (Hn,H).
 destruct (mod_pos_bound a (2^n)) as [LE LT]. order_pos.
 le_elim LE.
 apply bits_above_log2; try order.
 apply lt_le_trans with n; trivial.
 apply log2_lt_pow2; trivial.
 now rewrite <- LE, bits_0.
Qed.

Lemma mod_pow2_bits_low : forall a n m, m<n ->
 (a mod 2^n).[m] = a.[m].
Proof.
 intros a n m H.
 destruct (le_gt_cases 0 m) as [Hm|Hm]; [|now rewrite !testbit_neg_r].
 rewrite testbit_eqb; trivial.
 rewrite <- (mod_add _ (2^(P (n-m))*(a/2^n))) by order'.
 rewrite <- div_add by order_nz.
 rewrite (mul_comm _ 2), mul_assoc, <- pow_succ_r, succ_pred.
 rewrite mul_comm, mul_assoc, <- pow_add_r, (add_comm m), sub_add; trivial.
 rewrite add_comm, <- div_mod by order_nz.
 symmetry. apply testbit_eqb; trivial.
 apply le_0_sub; order.
 now apply lt_le_pred, lt_0_sub.
Qed.

(** We now prove that having the same bits implies equality.
    For that we use a notion of equality over functional
    streams of bits. *)

Definition eqf (f g:t -> bool) := forall n:t, f n = g n.

Instance eqf_equiv : Equivalence eqf.
Proof.
 split; congruence.
Qed.

Local Infix "===" := eqf (at level 70, no associativity).

Instance testbit_eqf : Proper (eq==>eqf) testbit.
Proof.
 intros a a' Ha n. now rewrite Ha.
Qed.

(** Only zero corresponds to the always-false stream. *)

Lemma bits_inj_0 :
 forall a, (forall n, a.[n] = false) -> a == 0.
Proof.
 intros a H. destruct (lt_trichotomy a 0) as [Ha|[Ha|Ha]]; trivial.
 apply (bits_above_log2_neg a (S (log2 (P (-a))))) in Ha.
 now rewrite H in Ha.
 apply lt_succ_diag_r.
 apply bit_log2 in Ha. now rewrite H in Ha.
Qed.

(** If two numbers produce the same stream of bits, they are equal. *)

Lemma bits_inj : forall a b, testbit a === testbit b -> a == b.
Proof.
 assert (AUX : forall n, 0<=n -> forall a b,
                0<=a<2^n -> testbit a === testbit b -> a == b).
  intros n Hn. apply le_ind with (4:=Hn).
  solve_proper.
  intros a b Ha H. rewrite pow_0_r, one_succ, lt_succ_r in Ha.
  assert (Ha' : a == 0) by (destruct Ha; order).
  rewrite Ha' in *.
  symmetry. apply bits_inj_0.
   intros m. now rewrite <- H, bits_0.
  clear n Hn. intros n Hn IH a b (Ha,Ha') H.
  rewrite (div_mod a 2), (div_mod b 2) by order'.
  f_equiv; [ | now rewrite <- 2 bit0_mod, H].
  f_equiv.
  apply IH.
  split. apply div_pos; order'.
  apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r.
   intros m.
   destruct (le_gt_cases 0 m).
   rewrite 2 div2_bits by trivial. apply H.
   now rewrite 2 testbit_neg_r.
 intros a b H.
 destruct (le_gt_cases 0 a) as [Ha|Ha].
 apply (AUX a); trivial. split; trivial.
 apply pow_gt_lin_r; order'.
 apply succ_inj, opp_inj.
 assert (0 <= - S a).
  apply opp_le_mono. now rewrite opp_involutive, opp_0, le_succ_l.
 apply (AUX (-(S a))); trivial. split; trivial.
 apply pow_gt_lin_r; order'.
  intros m. destruct (le_gt_cases 0 m).
  now rewrite 2 bits_opp, 2 pred_succ, H.
  now rewrite 2 testbit_neg_r.
Qed.

Lemma bits_inj_iff : forall a b, testbit a === testbit b <-> a == b.
Proof.
 split. apply bits_inj. intros EQ; now rewrite EQ.
Qed.

(** In fact, checking the bits at positive indexes is enough. *)

Lemma bits_inj' : forall a b,
 (forall n, 0<=n -> a.[n] = b.[n]) -> a == b.
Proof.
 intros a b H. apply bits_inj.
 intros n. destruct (le_gt_cases 0 n).
 now apply H.
 now rewrite 2 testbit_neg_r.
Qed.

Lemma bits_inj_iff' : forall a b, (forall n, 0<=n -> a.[n] = b.[n]) <-> a == b.
Proof.
 split. apply bits_inj'. intros EQ n Hn; now rewrite EQ.
Qed.

Ltac bitwise := apply bits_inj'; intros ?m ?Hm; autorewrite with bitwise.

Hint Rewrite lxor_spec lor_spec land_spec ldiff_spec bits_0 : bitwise.

(** The streams of bits that correspond to a numbers are
  exactly the ones which are stationary after some point. *)

Lemma are_bits : forall (f:t->bool), Proper (eq==>Logic.eq) f ->
 ((exists n, forall m, 0<=m -> f m = n.[m]) <->
  (exists k, forall m, k<=m -> f m = f k)).
Proof.
 intros f Hf. split.
 intros (a,H).
  destruct (le_gt_cases 0 a).
  exists (S (log2 a)). intros m Hm. apply le_succ_l in Hm.
  rewrite 2 H, 2 bits_above_log2; trivial using lt_succ_diag_r.
  order_pos. apply le_trans with (log2 a); order_pos.
  exists (S (log2 (P (-a)))). intros m Hm. apply le_succ_l in Hm.
  rewrite 2 H, 2 bits_above_log2_neg; trivial using lt_succ_diag_r.
  order_pos. apply le_trans with (log2 (P (-a))); order_pos.
 intros (k,Hk).
  destruct (lt_ge_cases k 0) as [LT|LE].
  case_eq (f 0); intros H0.
  exists (-1). intros m Hm. rewrite bits_m1, Hk by order.
  symmetry; rewrite <- H0. apply Hk; order.
  exists 0. intros m Hm. rewrite bits_0, Hk by order.
  symmetry; rewrite <- H0. apply Hk; order.
  revert f Hf Hk. apply le_ind with (4:=LE).
  (* compat : solve_proper fails here *)
  apply proper_sym_impl_iff. exact eq_sym.
  clear k LE. intros k k' Hk IH f Hf H. apply IH; trivial.
  now setoid_rewrite Hk.
  (* /compat *)
  intros f Hf H0. destruct (f 0).
  exists (-1). intros m Hm. now rewrite bits_m1, H0.
  exists 0. intros m Hm. now rewrite bits_0, H0.
  clear k LE. intros k LE IH f Hf Hk.
  destruct (IH (fun m => f (S m))) as (n, Hn).
  solve_proper.
  intros m Hm. apply Hk. now rewrite <- succ_le_mono.
  exists (f 0 + 2*n). intros m Hm.
  le_elim Hm.
  rewrite <- (succ_pred m), Hn, <- div2_bits.
  rewrite mul_comm, div_add, b2z_div2, add_0_l; trivial. order'.
  now rewrite <- lt_succ_r, succ_pred.
  now rewrite <- lt_succ_r, succ_pred.
  rewrite <- Hm.
  symmetry. apply add_b2z_double_bit0.
Qed.

(** * Properties of shifts *)

(** First, a unified specification for [shiftl] : the [shiftl_spec]
   below (combined with [testbit_neg_r]) is equivalent to
   [shiftl_spec_low] and [shiftl_spec_high]. *)

Lemma shiftl_spec : forall a n m, 0<=m -> (a << n).[m] = a.[m-n].
Proof.
 intros.
 destruct (le_gt_cases n m).
 now apply shiftl_spec_high.
 rewrite shiftl_spec_low, testbit_neg_r; trivial. now apply lt_sub_0.
Qed.

(** A shiftl by a negative number is a shiftr, and vice-versa *)

Lemma shiftr_opp_r : forall a n, a >> (-n) == a << n.
Proof.
 intros. bitwise. now rewrite shiftr_spec, shiftl_spec, add_opp_r.
Qed.

Lemma shiftl_opp_r : forall a n, a << (-n) == a >> n.
Proof.
 intros. bitwise. now rewrite shiftr_spec, shiftl_spec, sub_opp_r.
Qed.

(** Shifts correspond to multiplication or division by a power of two *)

Lemma shiftr_div_pow2 : forall a n, 0<=n -> a >> n == a / 2^n.
Proof.
 intros. bitwise. now rewrite shiftr_spec, div_pow2_bits.
Qed.

Lemma shiftr_mul_pow2 : forall a n, n<=0 -> a >> n == a * 2^(-n).
Proof.
 intros. bitwise. rewrite shiftr_spec, mul_pow2_bits; trivial.
 now rewrite sub_opp_r.
 now apply opp_nonneg_nonpos.
Qed.

Lemma shiftl_mul_pow2 : forall a n, 0<=n -> a << n == a * 2^n.
Proof.
 intros. bitwise. now rewrite shiftl_spec, mul_pow2_bits.
Qed.

Lemma shiftl_div_pow2 : forall a n, n<=0 -> a << n == a / 2^(-n).
Proof.
 intros. bitwise. rewrite shiftl_spec, div_pow2_bits; trivial.
 now rewrite add_opp_r.
 now apply opp_nonneg_nonpos.
Qed.

(** Shifts are morphisms *)

Instance shiftr_wd : Proper (eq==>eq==>eq) shiftr.
Proof.
 intros a a' Ha n n' Hn.
 destruct (le_ge_cases n 0) as [H|H]; assert (H':=H); rewrite Hn in H'.
 now rewrite 2 shiftr_mul_pow2, Ha, Hn.
 now rewrite 2 shiftr_div_pow2, Ha, Hn.
Qed.

Instance shiftl_wd : Proper (eq==>eq==>eq) shiftl.
Proof.
 intros a a' Ha n n' Hn. now rewrite <- 2 shiftr_opp_r, Ha, Hn.
Qed.

(** We could also have specified shiftl with an addition on the left. *)

Lemma shiftl_spec_alt : forall a n m, 0<=n -> (a << n).[m+n] = a.[m].
Proof.
 intros. now rewrite shiftl_mul_pow2, mul_pow2_bits, add_simpl_r.
Qed.

(** Chaining several shifts. The only case for which
    there isn't any simple expression is a true shiftr
    followed by a true shiftl.
*)

Lemma shiftl_shiftl : forall a n m, 0<=n ->
 (a << n) << m == a << (n+m).
Proof.
 intros a n p Hn. bitwise.
 rewrite 2 (shiftl_spec _ _ m) by trivial.
 rewrite add_comm, sub_add_distr.
 destruct (le_gt_cases 0 (m-p)) as [H|H].
 now rewrite shiftl_spec.
 rewrite 2 testbit_neg_r; trivial.
 apply lt_sub_0. now apply lt_le_trans with 0.
Qed.

Lemma shiftr_shiftl_l : forall a n m, 0<=n ->
 (a << n) >> m == a << (n-m).
Proof.
 intros. now rewrite <- shiftl_opp_r, shiftl_shiftl, add_opp_r.
Qed.

Lemma shiftr_shiftl_r : forall a n m, 0<=n ->
 (a << n) >> m == a >> (m-n).
Proof.
 intros. now rewrite <- 2 shiftl_opp_r, shiftl_shiftl, opp_sub_distr, add_comm.
Qed.

Lemma shiftr_shiftr : forall a n m, 0<=m ->
 (a >> n) >> m == a >> (n+m).
Proof.
 intros a n p Hn. bitwise.
 rewrite 3 shiftr_spec; trivial.
 now rewrite (add_comm n p), add_assoc.
 now apply add_nonneg_nonneg.
Qed.

(** shifts and constants *)

Lemma shiftl_1_l : forall n, 1 << n == 2^n.
Proof.
 intros n. destruct (le_gt_cases 0 n).
 now rewrite shiftl_mul_pow2, mul_1_l.
 rewrite shiftl_div_pow2, div_1_l, pow_neg_r; try order.
 apply pow_gt_1. order'. now apply opp_pos_neg.
Qed.

Lemma shiftl_0_r : forall a, a << 0 == a.
Proof.
 intros. rewrite shiftl_mul_pow2 by order. now nzsimpl.
Qed.

Lemma shiftr_0_r : forall a, a >> 0 == a.
Proof.
 intros. now rewrite <- shiftl_opp_r, opp_0, shiftl_0_r.
Qed.

Lemma shiftl_0_l : forall n, 0 << n == 0.
Proof.
 intros.
 destruct (le_ge_cases 0 n).
 rewrite shiftl_mul_pow2 by trivial. now nzsimpl.
 rewrite shiftl_div_pow2 by trivial.
 rewrite <- opp_nonneg_nonpos in H. nzsimpl; order_nz.
Qed.

Lemma shiftr_0_l : forall n, 0 >> n == 0.
Proof.
 intros. now rewrite <- shiftl_opp_r, shiftl_0_l.
Qed.

Lemma shiftl_eq_0_iff : forall a n, 0<=n -> (a << n == 0 <-> a == 0).
Proof.
 intros a n Hn.
 rewrite shiftl_mul_pow2 by trivial. rewrite eq_mul_0. split.
 intros [H | H]; trivial. contradict H; order_nz.
 intros H. now left.
Qed.

Lemma shiftr_eq_0_iff : forall a n,
 a >> n == 0 <-> a==0 \/ (0<a /\ log2 a < n).
Proof.
 intros a n.
 destruct (le_gt_cases 0 n) as [Hn|Hn].
 rewrite shiftr_div_pow2, div_small_iff by order_nz.
 destruct (lt_trichotomy a 0) as [LT|[EQ|LT]].
 split.
 intros [(H,_)|(H,H')]. order. generalize (pow_nonneg 2 n le_0_2); order.
 intros [H|(H,H')]; order.
 rewrite EQ. split. now left. intros _; left. split; order_pos.
 split. intros [(H,H')|(H,H')]; right. split; trivial.
  apply log2_lt_pow2; trivial.
  generalize (pow_nonneg 2 n le_0_2); order.
 intros [H|(H,H')]. order. left.
 split. order. now apply log2_lt_pow2.
 rewrite shiftr_mul_pow2 by order. rewrite eq_mul_0.
 split; intros [H|H].
 now left.
 elim (pow_nonzero 2 (-n)); try apply opp_nonneg_nonpos; order'.
 now left.
 destruct H. generalize (log2_nonneg a); order.
Qed.

Lemma shiftr_eq_0 : forall a n, 0<=a -> log2 a < n -> a >> n == 0.
Proof.
 intros a n Ha H. apply shiftr_eq_0_iff.
 le_elim Ha. right. now split. now left.
Qed.

(** Properties of [div2]. *)

Lemma div2_div : forall a, div2 a == a/2.
Proof.
 intros. rewrite div2_spec, shiftr_div_pow2. now nzsimpl. order'.
Qed.

Instance div2_wd : Proper (eq==>eq) div2.
Proof.
 intros a a' Ha. now rewrite 2 div2_div, Ha.
Qed.

Lemma div2_odd : forall a, a == 2*(div2 a) + odd a.
Proof.
 intros a. rewrite div2_div, <- bit0_odd, bit0_mod.
 apply div_mod. order'.
Qed.

(** Properties of [lxor] and others, directly deduced
    from properties of [xorb] and others. *)

Instance lxor_wd : Proper (eq ==> eq ==> eq) lxor.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Instance land_wd : Proper (eq ==> eq ==> eq) land.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Instance lor_wd : Proper (eq ==> eq ==> eq) lor.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Instance ldiff_wd : Proper (eq ==> eq ==> eq) ldiff.
Proof.
 intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
Qed.

Lemma lxor_eq : forall a a', lxor a a' == 0 -> a == a'.
Proof.
 intros a a' H. bitwise. apply xorb_eq.
 now rewrite <- lxor_spec, H, bits_0.
Qed.

Lemma lxor_nilpotent : forall a, lxor a a == 0.
Proof.
 intros. bitwise. apply xorb_nilpotent.
Qed.

Lemma lxor_eq_0_iff : forall a a', lxor a a' == 0 <-> a == a'.
Proof.
 split. apply lxor_eq. intros EQ; rewrite EQ; apply lxor_nilpotent.
Qed.

Lemma lxor_0_l : forall a, lxor 0 a == a.
Proof.
 intros. bitwise. apply xorb_false_l.
Qed.

Lemma lxor_0_r : forall a, lxor a 0 == a.
Proof.
 intros. bitwise. apply xorb_false_r.
Qed.

Lemma lxor_comm : forall a b, lxor a b == lxor b a.
Proof.
 intros. bitwise. apply xorb_comm.
Qed.

Lemma lxor_assoc :
 forall a b c, lxor (lxor a b) c == lxor a (lxor b c).
Proof.
 intros. bitwise. apply xorb_assoc.
Qed.

Lemma lor_0_l : forall a, lor 0 a == a.
Proof.
 intros. bitwise. trivial.
Qed.

Lemma lor_0_r : forall a, lor a 0 == a.
Proof.
 intros. bitwise. apply orb_false_r.
Qed.

Lemma lor_comm : forall a b, lor a b == lor b a.
Proof.
 intros. bitwise. apply orb_comm.
Qed.

Lemma lor_assoc :
 forall a b c, lor a (lor b c) == lor (lor a b) c.
Proof.
 intros. bitwise. apply orb_assoc.
Qed.

Lemma lor_diag : forall a, lor a a == a.
Proof.
 intros. bitwise. apply orb_diag.
Qed.

Lemma lor_eq_0_l : forall a b, lor a b == 0 -> a == 0.
Proof.
 intros a b H. bitwise.
 apply (orb_false_iff a.[m] b.[m]).
 now rewrite <- lor_spec, H, bits_0.
Qed.

Lemma lor_eq_0_iff : forall a b, lor a b == 0 <-> a == 0 /\ b == 0.
Proof.
 intros a b. split.
 split. now apply lor_eq_0_l in H.
 rewrite lor_comm in H. now apply lor_eq_0_l in H.
 intros (EQ,EQ'). now rewrite EQ, lor_0_l.
Qed.

Lemma land_0_l : forall a, land 0 a == 0.
Proof.
 intros. bitwise. trivial.
Qed.

Lemma land_0_r : forall a, land a 0 == 0.
Proof.
 intros. bitwise. apply andb_false_r.
Qed.

Lemma land_comm : forall a b, land a b == land b a.
Proof.
 intros. bitwise. apply andb_comm.
Qed.

Lemma land_assoc :
 forall a b c, land a (land b c) == land (land a b) c.
Proof.
 intros. bitwise. apply andb_assoc.
Qed.

Lemma land_diag : forall a, land a a == a.
Proof.
 intros. bitwise. apply andb_diag.
Qed.

Lemma ldiff_0_l : forall a, ldiff 0 a == 0.
Proof.
 intros. bitwise. trivial.
Qed.

Lemma ldiff_0_r : forall a, ldiff a 0 == a.
Proof.
 intros. bitwise. now rewrite andb_true_r.
Qed.

Lemma ldiff_diag : forall a, ldiff a a == 0.
Proof.
 intros. bitwise. apply andb_negb_r.
Qed.

Lemma lor_land_distr_l : forall a b c,
 lor (land a b) c == land (lor a c) (lor b c).
Proof.
 intros. bitwise. apply orb_andb_distrib_l.
Qed.

Lemma lor_land_distr_r : forall a b c,
 lor a (land b c) == land (lor a b) (lor a c).
Proof.
 intros. bitwise. apply orb_andb_distrib_r.
Qed.

Lemma land_lor_distr_l : forall a b c,
 land (lor a b) c == lor (land a c) (land b c).
Proof.
 intros. bitwise. apply andb_orb_distrib_l.
Qed.

Lemma land_lor_distr_r : forall a b c,
 land a (lor b c) == lor (land a b) (land a c).
Proof.
 intros. bitwise. apply andb_orb_distrib_r.
Qed.

Lemma ldiff_ldiff_l : forall a b c,
 ldiff (ldiff a b) c == ldiff a (lor b c).
Proof.
 intros. bitwise. now rewrite negb_orb, andb_assoc.
Qed.

Lemma lor_ldiff_and : forall a b,
 lor (ldiff a b) (land a b) == a.
Proof.
 intros. bitwise.
 now rewrite <- andb_orb_distrib_r, orb_comm, orb_negb_r, andb_true_r.
Qed.

Lemma land_ldiff : forall a b,
 land (ldiff a b) b == 0.
Proof.
 intros. bitwise.
 now rewrite <-andb_assoc, (andb_comm (negb _)), andb_negb_r, andb_false_r.
Qed.

(** Properties of [setbit] and [clearbit] *)

Definition setbit a n := lor a (1 << n).
Definition clearbit a n := ldiff a (1 << n).

Lemma setbit_spec' : forall a n, setbit a n == lor a (2^n).
Proof.
 intros. unfold setbit. now rewrite shiftl_1_l.
Qed.

Lemma clearbit_spec' : forall a n, clearbit a n == ldiff a (2^n).
Proof.
 intros. unfold clearbit. now rewrite shiftl_1_l.
Qed.

Instance setbit_wd : Proper (eq==>eq==>eq) setbit.
Proof. unfold setbit. solve_proper. Qed.

Instance clearbit_wd : Proper (eq==>eq==>eq) clearbit.
Proof. unfold clearbit. solve_proper. Qed.

Lemma pow2_bits_true : forall n, 0<=n -> (2^n).[n] = true.
Proof.
 intros. rewrite <- (mul_1_l (2^n)).
 now rewrite mul_pow2_bits, sub_diag, bit0_odd, odd_1.
Qed.

Lemma pow2_bits_false : forall n m, n~=m -> (2^n).[m] = false.
Proof.
 intros.
 destruct (le_gt_cases 0 n); [|now rewrite pow_neg_r, bits_0].
 destruct (le_gt_cases n m).
 rewrite <- (mul_1_l (2^n)), mul_pow2_bits; trivial.
 rewrite <- (succ_pred (m-n)), <- div2_bits.
 now rewrite div_small, bits_0 by (split; order').
 rewrite <- lt_succ_r, succ_pred, lt_0_sub. order.
 rewrite <- (mul_1_l (2^n)), mul_pow2_bits_low; trivial.
Qed.

Lemma pow2_bits_eqb : forall n m, 0<=n -> (2^n).[m] = eqb n m.
Proof.
 intros n m Hn. apply eq_true_iff_eq. rewrite eqb_eq. split.
 destruct (eq_decidable n m) as [H|H]. trivial.
 now rewrite (pow2_bits_false _ _ H).
 intros EQ. rewrite EQ. apply pow2_bits_true; order.
Qed.

Lemma setbit_eqb : forall a n m, 0<=n ->
 (setbit a n).[m] = eqb n m || a.[m].
Proof.
 intros. now rewrite setbit_spec', lor_spec, pow2_bits_eqb, orb_comm.
Qed.

Lemma setbit_iff : forall a n m, 0<=n ->
 ((setbit a n).[m] = true <-> n==m \/ a.[m] = true).
Proof.
 intros. now rewrite setbit_eqb, orb_true_iff, eqb_eq.
Qed.

Lemma setbit_eq : forall a n, 0<=n -> (setbit a n).[n] = true.
Proof.
 intros. apply setbit_iff; trivial. now left.
Qed.

Lemma setbit_neq : forall a n m, 0<=n -> n~=m ->
 (setbit a n).[m] = a.[m].
Proof.
 intros a n m Hn H. rewrite setbit_eqb; trivial.
 rewrite <- eqb_eq in H. apply not_true_is_false in H. now rewrite H.
Qed.

Lemma clearbit_eqb : forall a n m,
 (clearbit a n).[m] = a.[m] && negb (eqb n m).
Proof.
 intros.
 destruct (le_gt_cases 0 m); [| now rewrite 2 testbit_neg_r].
 rewrite clearbit_spec', ldiff_spec. f_equal. f_equal.
 destruct (le_gt_cases 0 n) as [Hn|Hn].
 now apply pow2_bits_eqb.
 symmetry. rewrite pow_neg_r, bits_0, <- not_true_iff_false, eqb_eq; order.
Qed.

Lemma clearbit_iff : forall a n m,
 (clearbit a n).[m] = true <-> a.[m] = true /\ n~=m.
Proof.
 intros. rewrite clearbit_eqb, andb_true_iff, <- eqb_eq.
 now rewrite negb_true_iff, not_true_iff_false.
Qed.

Lemma clearbit_eq : forall a n, (clearbit a n).[n] = false.
Proof.
 intros. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)).
 apply andb_false_r.
Qed.

Lemma clearbit_neq : forall a n m, n~=m ->
 (clearbit a n).[m] = a.[m].
Proof.
 intros a n m H. rewrite clearbit_eqb.
 rewrite <- eqb_eq in H. apply not_true_is_false in H. rewrite H.
 apply andb_true_r.
Qed.

(** Shifts of bitwise operations *)

Lemma shiftl_lxor : forall a b n,
 (lxor a b) << n == lxor (a << n) (b << n).
Proof.
 intros. bitwise. now rewrite !shiftl_spec, lxor_spec.
Qed.

Lemma shiftr_lxor : forall a b n,
 (lxor a b) >> n == lxor (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec, lxor_spec.
Qed.

Lemma shiftl_land : forall a b n,
 (land a b) << n == land (a << n) (b << n).
Proof.
 intros. bitwise. now rewrite !shiftl_spec, land_spec.
Qed.

Lemma shiftr_land : forall a b n,
 (land a b) >> n == land (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec, land_spec.
Qed.

Lemma shiftl_lor : forall a b n,
 (lor a b) << n == lor (a << n) (b << n).
Proof.
 intros. bitwise. now rewrite !shiftl_spec, lor_spec.
Qed.

Lemma shiftr_lor : forall a b n,
 (lor a b) >> n == lor (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec, lor_spec.
Qed.

Lemma shiftl_ldiff : forall a b n,
 (ldiff a b) << n == ldiff (a << n) (b << n).
Proof.
 intros. bitwise. now rewrite !shiftl_spec, ldiff_spec.
Qed.

Lemma shiftr_ldiff : forall a b n,
 (ldiff a b) >> n == ldiff (a >> n) (b >> n).
Proof.
 intros. bitwise. now rewrite !shiftr_spec, ldiff_spec.
Qed.

(** For integers, we do have a binary complement function *)

Definition lnot a := P (-a).

Instance lnot_wd : Proper (eq==>eq) lnot.
Proof. unfold lnot. solve_proper. Qed.

Lemma lnot_spec : forall a n, 0<=n -> (lnot a).[n] = negb a.[n].
Proof.
 intros. unfold lnot. rewrite <- (opp_involutive a) at 2.
 rewrite bits_opp, negb_involutive; trivial.
Qed.

Lemma lnot_involutive : forall a, lnot (lnot a) == a.
Proof.
 intros a. bitwise. now rewrite 2 lnot_spec, negb_involutive.
Qed.

Lemma lnot_0 : lnot 0 == -1.
Proof.
 unfold lnot. now rewrite opp_0, <- sub_1_r, sub_0_l.
Qed.

Lemma lnot_m1 : lnot (-1) == 0.
Proof.
 unfold lnot. now rewrite opp_involutive, one_succ, pred_succ.
Qed.

(** Complement and other operations *)

Lemma lor_m1_r : forall a, lor a (-1) == -1.
Proof.
 intros. bitwise. now rewrite bits_m1, orb_true_r.
Qed.

Lemma lor_m1_l : forall a, lor (-1) a == -1.
Proof.
 intros. now rewrite lor_comm, lor_m1_r.
Qed.

Lemma land_m1_r : forall a, land a (-1) == a.
Proof.
 intros. bitwise. now rewrite bits_m1, andb_true_r.
Qed.

Lemma land_m1_l : forall a, land (-1) a == a.
Proof.
 intros. now rewrite land_comm, land_m1_r.
Qed.

Lemma ldiff_m1_r : forall a, ldiff a (-1) == 0.
Proof.
 intros. bitwise. now rewrite bits_m1, andb_false_r.
Qed.

Lemma ldiff_m1_l : forall a, ldiff (-1) a == lnot a.
Proof.
 intros. bitwise. now rewrite lnot_spec, bits_m1.
Qed.

Lemma lor_lnot_diag : forall a, lor a (lnot a) == -1.
Proof.
 intros a. bitwise. rewrite lnot_spec, bits_m1; trivial.
 now destruct a.[m].
Qed.

Lemma add_lnot_diag : forall a, a + lnot a == -1.
Proof.
 intros a. unfold lnot.
 now rewrite add_pred_r, add_opp_r, sub_diag, one_succ, opp_succ, opp_0.
Qed.

Lemma ldiff_land : forall a b, ldiff a b == land a (lnot b).
Proof.
 intros. bitwise. now rewrite lnot_spec.
Qed.

Lemma land_lnot_diag : forall a, land a (lnot a) == 0.
Proof.
 intros. now rewrite <- ldiff_land, ldiff_diag.
Qed.

Lemma lnot_lor : forall a b, lnot (lor a b) == land (lnot a) (lnot b).
Proof.
 intros a b. bitwise. now rewrite !lnot_spec, lor_spec, negb_orb.
Qed.

Lemma lnot_land : forall a b, lnot (land a b) == lor (lnot a) (lnot b).
Proof.
 intros a b. bitwise. now rewrite !lnot_spec, land_spec, negb_andb.
Qed.

Lemma lnot_ldiff : forall a b, lnot (ldiff a b) == lor (lnot a) b.
Proof.
 intros a b. bitwise.
 now rewrite !lnot_spec, ldiff_spec, negb_andb, negb_involutive.
Qed.

Lemma lxor_lnot_lnot : forall a b, lxor (lnot a) (lnot b) == lxor a b.
Proof.
 intros a b. bitwise. now rewrite !lnot_spec, xorb_negb_negb.
Qed.

Lemma lnot_lxor_l : forall a b, lnot (lxor a b) == lxor (lnot a) b.
Proof.
 intros a b. bitwise. now rewrite !lnot_spec, !lxor_spec, negb_xorb_l.
Qed.

Lemma lnot_lxor_r : forall a b, lnot (lxor a b) == lxor a (lnot b).
Proof.
 intros a b. bitwise. now rewrite !lnot_spec, !lxor_spec, negb_xorb_r.
Qed.

Lemma lxor_m1_r : forall a, lxor a (-1) == lnot a.
Proof.
 intros. now rewrite <- (lxor_0_r (lnot a)), <- lnot_m1, lxor_lnot_lnot.
Qed.

Lemma lxor_m1_l : forall a, lxor (-1) a == lnot a.
Proof.
 intros. now rewrite lxor_comm, lxor_m1_r.
Qed.

Lemma lxor_lor : forall a b, land a b == 0 ->
 lxor a b == lor a b.
Proof.
 intros a b H. bitwise.
 assert (a.[m] && b.[m] = false)
   by now rewrite <- land_spec, H, bits_0.
 now destruct a.[m], b.[m].
Qed.

Lemma lnot_shiftr : forall a n, 0<=n -> lnot (a >> n) == (lnot a) >> n.
Proof.
 intros a n Hn. bitwise.
 now rewrite lnot_spec, 2 shiftr_spec, lnot_spec by order_pos.
Qed.

(** [(ones n)] is [2^n-1], the number with [n] digits 1 *)

Definition ones n := P (1<<n).

Instance ones_wd : Proper (eq==>eq) ones.
Proof. unfold ones. solve_proper. Qed.

Lemma ones_equiv : forall n, ones n == P (2^n).
Proof.
 intros. unfold ones.
 destruct (le_gt_cases 0 n).
 now rewrite shiftl_mul_pow2, mul_1_l.
 f_equiv. rewrite pow_neg_r; trivial.
 rewrite <- shiftr_opp_r. apply shiftr_eq_0_iff. right; split.
 order'. rewrite log2_1. now apply opp_pos_neg.
Qed.

Lemma ones_add : forall n m, 0<=n -> 0<=m ->
 ones (m+n) == 2^m * ones n + ones m.
Proof.
 intros n m Hn Hm. rewrite !ones_equiv.
 rewrite <- !sub_1_r, mul_sub_distr_l, mul_1_r, <- pow_add_r by trivial.
 rewrite add_sub_assoc, sub_add. reflexivity.
Qed.

Lemma ones_div_pow2 : forall n m, 0<=m<=n -> ones n / 2^m == ones (n-m).
Proof.
 intros n m (Hm,H). symmetry. apply div_unique with (ones m).
 left. rewrite ones_equiv. split.
 rewrite <- lt_succ_r, succ_pred. order_pos.
 now rewrite <- le_succ_l, succ_pred.
 rewrite <- (sub_add m n) at 1. rewrite (add_comm _ m).
 apply ones_add; trivial. now apply le_0_sub.
Qed.

Lemma ones_mod_pow2 : forall n m, 0<=m<=n -> (ones n) mod (2^m) == ones m.
Proof.
 intros n m (Hm,H). symmetry. apply mod_unique with (ones (n-m)).
 left. rewrite ones_equiv. split.
 rewrite <- lt_succ_r, succ_pred. order_pos.
 now rewrite <- le_succ_l, succ_pred.
 rewrite <- (sub_add m n) at 1. rewrite (add_comm _ m).
 apply ones_add; trivial. now apply le_0_sub.
Qed.

Lemma ones_spec_low : forall n m, 0<=m<n -> (ones n).[m] = true.
Proof.
 intros n m (Hm,H). apply testbit_true; trivial.
 rewrite ones_div_pow2 by (split; order).
 rewrite <- (pow_1_r 2). rewrite ones_mod_pow2.
 rewrite ones_equiv. now nzsimpl'.
 split. order'. apply le_add_le_sub_r. nzsimpl. now apply le_succ_l.
Qed.

Lemma ones_spec_high : forall n m, 0<=n<=m -> (ones n).[m] = false.
Proof.
 intros n m (Hn,H). le_elim Hn.
 apply bits_above_log2; rewrite ones_equiv.
 rewrite <-lt_succ_r, succ_pred; order_pos.
 rewrite log2_pred_pow2; trivial. now rewrite <-le_succ_l, succ_pred.
 rewrite ones_equiv. now rewrite <- Hn, pow_0_r, one_succ, pred_succ, bits_0.
Qed.

Lemma ones_spec_iff : forall n m, 0<=n ->
 ((ones n).[m] = true <-> 0<=m<n).
Proof.
 intros n m Hn. split. intros H.
 destruct (lt_ge_cases m 0) as [Hm|Hm].
  now rewrite testbit_neg_r in H.
  split; trivial. apply lt_nge. intro H'. rewrite ones_spec_high in H.
  discriminate. now split.
 apply ones_spec_low.
Qed.

Lemma lor_ones_low : forall a n, 0<=a -> log2 a < n ->
 lor a (ones n) == ones n.
Proof.
 intros a n Ha H. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, bits_above_log2; try split; trivial.
 now apply lt_le_trans with n.
 apply le_trans with (log2 a); order_pos.
 rewrite ones_spec_low, orb_true_r; try split; trivial.
Qed.

Lemma land_ones : forall a n, 0<=n -> land a (ones n) == a mod 2^n.
Proof.
 intros a n Hn. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, mod_pow2_bits_high, andb_false_r;
  try split; trivial.
 rewrite ones_spec_low, mod_pow2_bits_low, andb_true_r;
  try split; trivial.
Qed.

Lemma land_ones_low : forall a n, 0<=a -> log2 a < n ->
 land a (ones n) == a.
Proof.
 intros a n Ha H.
 assert (Hn : 0<=n) by (generalize (log2_nonneg a); order).
 rewrite land_ones; trivial. apply mod_small.
 split; trivial.
 apply log2_lt_cancel. now rewrite log2_pow2.
Qed.

Lemma ldiff_ones_r : forall a n, 0<=n ->
 ldiff a (ones n) == (a >> n) << n.
Proof.
 intros a n Hn. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, shiftl_spec_high, shiftr_spec; trivial.
 rewrite sub_add; trivial. apply andb_true_r.
 now apply le_0_sub.
 now split.
 rewrite ones_spec_low, shiftl_spec_low, andb_false_r;
  try split; trivial.
Qed.

Lemma ldiff_ones_r_low : forall a n, 0<=a -> log2 a < n ->
 ldiff a (ones n) == 0.
Proof.
 intros a n Ha H. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, bits_above_log2; trivial.
 now apply lt_le_trans with n.
 split; trivial. now apply le_trans with (log2 a); order_pos.
 rewrite ones_spec_low, andb_false_r; try split; trivial.
Qed.

Lemma ldiff_ones_l_low : forall a n, 0<=a -> log2 a < n ->
 ldiff (ones n) a == lxor a (ones n).
Proof.
 intros a n Ha H. bitwise. destruct (le_gt_cases n m).
 rewrite ones_spec_high, bits_above_log2; trivial.
 now apply lt_le_trans with n.
 split; trivial. now apply le_trans with (log2 a); order_pos.
 rewrite ones_spec_low, xorb_true_r; try split; trivial.
Qed.

(** Bitwise operations and sign *)

Lemma shiftl_nonneg : forall a n, 0 <= (a << n) <-> 0 <= a.
Proof.
 intros a n.
 destruct (le_ge_cases 0 n) as [Hn|Hn].
 (* 0<=n *)
 rewrite 2 bits_iff_nonneg_ex. split; intros (k,Hk).
 exists (k-n). intros m Hm.
 destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r].
 rewrite <- (add_simpl_r m n), <- (shiftl_spec a n) by order_pos.
 apply Hk. now apply lt_sub_lt_add_r.
 exists (k+n). intros m Hm.
 destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r].
 rewrite shiftl_spec by trivial. apply Hk. now apply lt_add_lt_sub_r.
 (* n<=0*)
 rewrite <- shiftr_opp_r, 2 bits_iff_nonneg_ex. split; intros (k,Hk).
 destruct (le_gt_cases 0 k).
 exists (k-n). intros m Hm. apply lt_sub_lt_add_r in Hm.
 rewrite <- (add_simpl_r m n), <- add_opp_r, <- (shiftr_spec a (-n)).
 now apply Hk. order.
 assert (EQ : a >> (-n) == 0).
  apply bits_inj'. intros m Hm. rewrite bits_0. apply Hk; order.
 apply shiftr_eq_0_iff in EQ.
 rewrite <- bits_iff_nonneg_ex. destruct EQ as [EQ|[LT _]]; order.
 exists (k+n). intros m Hm.
 destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r].
 rewrite shiftr_spec by trivial. apply Hk.
 rewrite add_opp_r. now apply lt_add_lt_sub_r.
Qed.

Lemma shiftl_neg : forall a n, (a << n) < 0 <-> a < 0.
Proof.
 intros a n. now rewrite 2 lt_nge, shiftl_nonneg.
Qed.

Lemma shiftr_nonneg : forall a n, 0 <= (a >> n) <-> 0 <= a.
Proof.
 intros. rewrite <- shiftl_opp_r. apply shiftl_nonneg.
Qed.

Lemma shiftr_neg : forall a n, (a >> n) < 0 <-> a < 0.
Proof.
 intros a n. now rewrite 2 lt_nge, shiftr_nonneg.
Qed.

Lemma div2_nonneg : forall a, 0 <= div2 a <-> 0 <= a.
Proof.
 intros. rewrite div2_spec. apply shiftr_nonneg.
Qed.

Lemma div2_neg : forall a, div2 a < 0 <-> a < 0.
Proof.
 intros a. now rewrite 2 lt_nge, div2_nonneg.
Qed.

Lemma lor_nonneg : forall a b, 0 <= lor a b <-> 0<=a /\ 0<=b.
Proof.
 intros a b.
 rewrite 3 bits_iff_nonneg_ex. split. intros (k,Hk).
 split; exists k; intros m Hm; apply (orb_false_elim a.[m] b.[m]);
  rewrite <- lor_spec; now apply Hk.
 intros ((k,Hk),(k',Hk')).
 destruct (le_ge_cases k k'); [ exists k' | exists k ];
  intros m Hm; rewrite lor_spec, Hk, Hk'; trivial; order.
Qed.

Lemma lor_neg : forall a b, lor a b < 0 <-> a < 0 \/ b < 0.
Proof.
 intros a b. rewrite 3 lt_nge, lor_nonneg. split.
  apply not_and. apply le_decidable.
  now intros [H|H] (H',H'').
Qed.

Lemma lnot_nonneg : forall a, 0 <= lnot a <-> a < 0.
Proof.
 intros a; unfold lnot.
 now rewrite <- opp_succ, opp_nonneg_nonpos, le_succ_l.
Qed.

Lemma lnot_neg : forall a, lnot a < 0 <-> 0 <= a.
Proof.
 intros a. now rewrite le_ngt, lt_nge, lnot_nonneg.
Qed.

Lemma land_nonneg : forall a b, 0 <= land a b <-> 0<=a \/ 0<=b.
Proof.
 intros a b.
 now rewrite <- (lnot_involutive (land a b)), lnot_land, lnot_nonneg,
  lor_neg, !lnot_neg.
Qed.

Lemma land_neg : forall a b, land a b < 0 <-> a < 0 /\ b < 0.
Proof.
 intros a b.
 now rewrite <- (lnot_involutive (land a b)), lnot_land, lnot_neg,
  lor_nonneg, !lnot_nonneg.
Qed.

Lemma ldiff_nonneg : forall a b, 0 <= ldiff a b <-> 0<=a \/ b<0.
Proof.
 intros. now rewrite ldiff_land, land_nonneg, lnot_nonneg.
Qed.

Lemma ldiff_neg : forall a b, ldiff a b < 0 <-> a<0 /\ 0<=b.
Proof.
 intros. now rewrite ldiff_land, land_neg, lnot_neg.
Qed.

Lemma lxor_nonneg : forall a b, 0 <= lxor a b <-> (0<=a <-> 0<=b).
Proof.
 assert (H : forall a b, 0<=a -> 0<=b -> 0<=lxor a b).
  intros a b. rewrite 3 bits_iff_nonneg_ex. intros (k,Hk) (k', Hk').
  destruct (le_ge_cases k k'); [ exists k' | exists k];
   intros m Hm; rewrite lxor_spec, Hk, Hk'; trivial; order.
 assert (H' : forall a b, 0<=a -> b<0 -> lxor a b<0).
  intros a b. rewrite bits_iff_nonneg_ex, 2 bits_iff_neg_ex.
  intros (k,Hk) (k', Hk').
  destruct (le_ge_cases k k'); [ exists k' | exists k];
   intros m Hm; rewrite lxor_spec, Hk, Hk'; trivial; order.
 intros a b.
 split.
 intros Hab. split.
 intros Ha. destruct (le_gt_cases 0 b) as [Hb|Hb]; trivial.
  generalize (H' _ _ Ha Hb). order.
 intros Hb. destruct (le_gt_cases 0 a) as [Ha|Ha]; trivial.
  generalize (H' _ _ Hb Ha). rewrite lxor_comm. order.
 intros E.
 destruct (le_gt_cases 0 a) as [Ha|Ha]. apply H; trivial. apply E; trivial.
 destruct (le_gt_cases 0 b) as [Hb|Hb]. apply H; trivial. apply E; trivial.
 rewrite <- lxor_lnot_lnot. apply H; now apply lnot_nonneg.
Qed.

(** Bitwise operations and log2 *)

Lemma log2_bits_unique : forall a n,
 a.[n] = true ->
 (forall m, n<m -> a.[m] = false) ->
 log2 a == n.
Proof.
 intros a n H H'.
 destruct (lt_trichotomy a 0) as [Ha|[Ha|Ha]].
 (* a < 0 *)
 destruct (proj1 (bits_iff_neg_ex a) Ha) as (k,Hk).
 destruct (le_gt_cases n k).
 specialize (Hk (S k) (lt_succ_diag_r _)).
 rewrite H' in Hk. discriminate. apply lt_succ_r; order.
 specialize (H' (S n) (lt_succ_diag_r _)).
 rewrite Hk in H'. discriminate. apply lt_succ_r; order.
 (* a = 0 *)
 now rewrite Ha, bits_0 in H.
 (* 0 < a *)
 apply le_antisymm; apply le_ngt; intros LT.
 specialize (H' _ LT). now rewrite bit_log2 in H'.
 now rewrite bits_above_log2 in H by order.
Qed.

Lemma log2_shiftr : forall a n, 0<a -> log2 (a >> n) == max 0 (log2 a - n).
Proof.
 intros a n Ha.
 destruct (le_gt_cases 0 (log2 a - n));
   [rewrite max_r | rewrite max_l]; try order.
 apply log2_bits_unique.
 now rewrite shiftr_spec, sub_add, bit_log2.
 intros m Hm.
 destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r].
 rewrite shiftr_spec; trivial. apply bits_above_log2; try order.
 now apply lt_sub_lt_add_r.
 rewrite lt_sub_lt_add_r, add_0_l in H.
 apply log2_nonpos. apply le_lteq; right.
 apply shiftr_eq_0_iff. right. now split.
Qed.

Lemma log2_shiftl : forall a n, 0<a -> 0<=n -> log2 (a << n) == log2 a + n.
Proof.
 intros a n Ha Hn.
 rewrite shiftl_mul_pow2, add_comm by trivial.
 now apply log2_mul_pow2.
Qed.

Lemma log2_shiftl' : forall a n, 0<a -> log2 (a << n) == max 0 (log2 a + n).
Proof.
 intros a n Ha.
 rewrite <- shiftr_opp_r, log2_shiftr by trivial.
 destruct (le_gt_cases 0 (log2 a + n));
   [rewrite 2 max_r | rewrite 2 max_l]; rewrite ?sub_opp_r; try order.
Qed.

Lemma log2_lor : forall a b, 0<=a -> 0<=b ->
 log2 (lor a b) == max (log2 a) (log2 b).
Proof.
 assert (AUX : forall a b, 0<=a -> a<=b -> log2 (lor a b) == log2 b).
  intros a b Ha H.
  le_elim Ha; [|now rewrite <- Ha, lor_0_l].
  apply log2_bits_unique.
  now rewrite lor_spec, bit_log2, orb_true_r by order.
  intros m Hm. assert (H' := log2_le_mono _ _ H).
  now rewrite lor_spec, 2 bits_above_log2 by order.
 (* main *)
 intros a b Ha Hb. destruct (le_ge_cases a b) as [H|H].
 rewrite max_r by now apply log2_le_mono.
 now apply AUX.
 rewrite max_l by now apply log2_le_mono.
 rewrite lor_comm. now apply AUX.
Qed.

Lemma log2_land : forall a b, 0<=a -> 0<=b ->
 log2 (land a b) <= min (log2 a) (log2 b).
Proof.
 assert (AUX : forall a b, 0<=a -> a<=b -> log2 (land a b) <= log2 a).
  intros a b Ha Hb.
  apply le_ngt. intros LT.
  assert (H : 0 <= land a b) by (apply land_nonneg; now left).
  le_elim H.
  generalize (bit_log2 (land a b) H).
  now rewrite land_spec, bits_above_log2.
  rewrite <- H in LT. apply log2_lt_cancel in LT; order.
 (* main *)
 intros a b Ha Hb.
 destruct (le_ge_cases a b) as [H|H].
 rewrite min_l by now apply log2_le_mono. now apply AUX.
 rewrite min_r by now apply log2_le_mono. rewrite land_comm. now apply AUX.
Qed.

Lemma log2_lxor : forall a b, 0<=a -> 0<=b ->
 log2 (lxor a b) <= max (log2 a) (log2 b).
Proof.
 assert (AUX : forall a b, 0<=a -> a<=b -> log2 (lxor a b) <= log2 b).
  intros a b Ha Hb.
  apply le_ngt. intros LT.
  assert (H : 0 <= lxor a b) by (apply lxor_nonneg; split; order).
  le_elim H.
  generalize (bit_log2 (lxor a b) H).
  rewrite lxor_spec, 2 bits_above_log2; try order. discriminate.
  apply le_lt_trans with (log2 b); trivial. now apply log2_le_mono.
  rewrite <- H in LT. apply log2_lt_cancel in LT; order.
 (* main *)
 intros a b Ha Hb.
 destruct (le_ge_cases a b) as [H|H].
 rewrite max_r by now apply log2_le_mono. now apply AUX.
 rewrite max_l by now apply log2_le_mono. rewrite lxor_comm. now apply AUX.
Qed.

(** Bitwise operations and arithmetical operations *)

Local Notation xor3 a b c := (xorb (xorb a b) c).
Local Notation lxor3 a b c := (lxor (lxor a b) c).
Local Notation nextcarry a b c := ((a&&b) || (c && (a||b))).
Local Notation lnextcarry a b c := (lor (land a b) (land c (lor a b))).

Lemma add_bit0 : forall a b, (a+b).[0] = xorb a.[0] b.[0].
Proof.
 intros. now rewrite !bit0_odd, odd_add.
Qed.

Lemma add3_bit0 : forall a b c,
 (a+b+c).[0] = xor3 a.[0] b.[0] c.[0].
Proof.
 intros. now rewrite !add_bit0.
Qed.

Lemma add3_bits_div2 : forall (a0 b0 c0 : bool),
 (a0 + b0 + c0)/2 == nextcarry a0 b0 c0.
Proof.
 assert (H : 1+1 == 2) by now nzsimpl'.
 intros [|] [|] [|]; simpl; rewrite ?add_0_l, ?add_0_r, ?H;
  (apply div_same; order') || (apply div_small; split; order') || idtac.
 symmetry. apply div_unique with 1. left; split; order'. now nzsimpl'.
Qed.

Lemma add_carry_div2 : forall a b (c0:bool),
 (a + b + c0)/2 == a/2 + b/2 + nextcarry a.[0] b.[0] c0.
Proof.
 intros.
 rewrite <- add3_bits_div2.
 rewrite (add_comm ((a/2)+_)).
 rewrite <- div_add by order'.
 f_equiv.
 rewrite <- !div2_div, mul_comm, mul_add_distr_l.
 rewrite (div2_odd a), <- bit0_odd at 1.
 rewrite (div2_odd b), <- bit0_odd at 1.
 rewrite add_shuffle1.
 rewrite <-(add_assoc _ _ c0). apply add_comm.
Qed.

(** The main result concerning addition: we express the bits of the sum
  in term of bits of [a] and [b] and of some carry stream which is also
  recursively determined by another equation.
*)

Lemma add_carry_bits_aux : forall n, 0<=n ->
 forall a b (c0:bool), -(2^n) <= a < 2^n -> -(2^n) <= b < 2^n ->
  exists c,
   a+b+c0 == lxor3 a b c /\ c/2 == lnextcarry a b c /\ c.[0] = c0.
Proof.
 intros n Hn. apply le_ind with (4:=Hn).
 solve_proper.
 (* base *)
 intros a b c0. rewrite !pow_0_r, !one_succ, !lt_succ_r, <- !one_succ.
 intros (Ha1,Ha2) (Hb1,Hb2).
 le_elim Ha1; rewrite <- ?le_succ_l, ?succ_m1 in Ha1;
  le_elim Hb1; rewrite <- ?le_succ_l, ?succ_m1 in Hb1.
 (* base, a = 0, b = 0 *)
 exists c0.
 rewrite (le_antisymm _ _ Ha2 Ha1), (le_antisymm _ _ Hb2 Hb1).
 rewrite !add_0_l, !lxor_0_l, !lor_0_r, !land_0_r, !lor_0_r.
 rewrite b2z_div2, b2z_bit0; now repeat split.
 (* base, a = 0, b = -1 *)
 exists (-c0). rewrite <- Hb1, (le_antisymm _ _ Ha2 Ha1). repeat split.
 rewrite add_0_l, lxor_0_l, lxor_m1_l.
 unfold lnot. now rewrite opp_involutive, add_comm, add_opp_r, sub_1_r.
 rewrite land_0_l, !lor_0_l, land_m1_r.
 symmetry. apply div_unique with c0. left; destruct c0; simpl; split; order'.
  now rewrite two_succ, mul_succ_l, mul_1_l, add_opp_r, sub_add.
 rewrite bit0_odd, odd_opp; destruct c0; simpl; apply odd_1 || apply odd_0.
 (* base, a = -1, b = 0 *)
 exists (-c0). rewrite <- Ha1, (le_antisymm _ _ Hb2 Hb1). repeat split.
 rewrite add_0_r, lxor_0_r, lxor_m1_l.
 unfold lnot. now rewrite opp_involutive, add_comm, add_opp_r, sub_1_r.
 rewrite land_0_r, lor_0_r, lor_0_l, land_m1_r.
 symmetry. apply div_unique with c0. left; destruct c0; simpl; split; order'.
  now rewrite two_succ, mul_succ_l, mul_1_l, add_opp_r, sub_add.
 rewrite bit0_odd, odd_opp; destruct c0; simpl; apply odd_1 || apply odd_0.
 (* base, a = -1, b = -1 *)
 exists (c0 + 2*(-1)). rewrite <- Ha1, <- Hb1. repeat split.
 rewrite lxor_m1_l, lnot_m1, lxor_0_l.
 now rewrite two_succ, mul_succ_l, mul_1_l, add_comm, add_assoc.
 rewrite land_m1_l, lor_m1_l.
 apply add_b2z_double_div2.
 apply add_b2z_double_bit0.
 (* step *)
 clear n Hn. intros n Hn IH a b c0 Ha Hb.
 set (c1:=nextcarry a.[0] b.[0] c0).
 destruct (IH (a/2) (b/2) c1) as (c & IH1 & IH2 & Hc); clear IH.
 split.
 apply div_le_lower_bound. order'. now rewrite mul_opp_r, <- pow_succ_r.
 apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r.
 split.
 apply div_le_lower_bound. order'. now rewrite mul_opp_r, <- pow_succ_r.
 apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r.
 exists (c0 + 2*c). repeat split.
 (* step, add *)
 bitwise.
 le_elim Hm.
 rewrite <- (succ_pred m), lt_succ_r in Hm.
 rewrite <- (succ_pred m), <- !div2_bits, <- 2 lxor_spec by trivial.
 f_equiv.
 rewrite add_b2z_double_div2, <- IH1. apply add_carry_div2.
 rewrite <- Hm.
 now rewrite add_b2z_double_bit0, add3_bit0, b2z_bit0.
 (* step, carry *)
 rewrite add_b2z_double_div2.
 bitwise.
 le_elim Hm.
 rewrite <- (succ_pred m), lt_succ_r in Hm.
 rewrite <- (succ_pred m), <- !div2_bits, IH2 by trivial.
 autorewrite with bitwise. now rewrite add_b2z_double_div2.
 rewrite <- Hm.
 now rewrite add_b2z_double_bit0.
 (* step, carry0 *)
 apply add_b2z_double_bit0.
Qed.

Lemma add_carry_bits : forall a b (c0:bool), exists c,
 a+b+c0 == lxor3 a b c /\ c/2 == lnextcarry a b c /\ c.[0] = c0.
Proof.
 intros a b c0.
 set (n := max (abs a) (abs b)).
 apply (add_carry_bits_aux n).
 (* positivity *)
 unfold n.
 destruct (le_ge_cases (abs a) (abs b));
  [rewrite max_r|rewrite max_l]; order_pos'.
 (* bound for a *)
 assert (Ha : abs a < 2^n).
  apply lt_le_trans with (2^(abs a)). apply pow_gt_lin_r; order_pos'.
  apply pow_le_mono_r. order'. unfold n.
  destruct (le_ge_cases (abs a) (abs b));
   [rewrite max_r|rewrite max_l]; try order.
 apply abs_lt in Ha. destruct Ha; split; order.
 (* bound for b *)
 assert (Hb : abs b < 2^n).
  apply lt_le_trans with (2^(abs b)). apply pow_gt_lin_r; order_pos'.
  apply pow_le_mono_r. order'. unfold n.
  destruct (le_ge_cases (abs a) (abs b));
   [rewrite max_r|rewrite max_l]; try order.
 apply abs_lt in Hb. destruct Hb; split; order.
Qed.

(** Particular case : the second bit of an addition *)

Lemma add_bit1 : forall a b,
 (a+b).[1] = xor3 a.[1] b.[1] (a.[0] && b.[0]).
Proof.
 intros a b.
 destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc).
 simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1.
 autorewrite with bitwise. f_equal.
 rewrite one_succ, <- div2_bits, EQ2 by order.
 autorewrite with bitwise.
 rewrite Hc. simpl. apply orb_false_r.
Qed.

(** In an addition, there will be no carries iff there is
  no common bits in the numbers to add *)

Lemma nocarry_equiv : forall a b c,
 c/2 == lnextcarry a b c -> c.[0] = false ->
 (c == 0 <-> land a b == 0).
Proof.
 intros a b c H H'.
 split. intros EQ; rewrite EQ in *.
 rewrite div_0_l in H by order'.
 symmetry in H. now apply lor_eq_0_l in H.
 intros EQ. rewrite EQ, lor_0_l in H.
 apply bits_inj'. intros n Hn. rewrite bits_0.
 apply le_ind with (4:=Hn).
 solve_proper.
 trivial.
 clear n Hn. intros n Hn IH.
 rewrite <- div2_bits, H; trivial.
 autorewrite with bitwise.
 now rewrite IH.
Qed.

(** When there is no common bits, the addition is just a xor *)

Lemma add_nocarry_lxor : forall a b, land a b == 0 ->
 a+b == lxor a b.
Proof.
 intros a b H.
 destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc).
 simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1.
 apply (nocarry_equiv a b c) in H; trivial.
 rewrite H. now rewrite lxor_0_r.
Qed.

(** A null [ldiff] implies being smaller *)

Lemma ldiff_le : forall a b, 0<=b -> ldiff a b == 0 -> 0 <= a <= b.
Proof.
 assert (AUX : forall n, 0<=n ->
          forall a b, 0 <= a < 2^n -> 0<=b -> ldiff a b == 0 -> a <= b).
 intros n Hn. apply le_ind with (4:=Hn); clear n Hn.
 solve_proper.
 intros a b Ha Hb _. rewrite pow_0_r, one_succ, lt_succ_r in Ha.
 setoid_replace a with 0 by (destruct Ha; order'); trivial.
 intros n Hn IH a b (Ha,Ha') Hb H.
 assert (NEQ : 2 ~= 0) by order'.
 rewrite (div_mod a 2 NEQ), (div_mod b 2 NEQ).
 apply add_le_mono.
 apply mul_le_mono_pos_l; try order'.
 apply IH.
 split. apply div_pos; order'.
 apply div_lt_upper_bound; try order'. now rewrite <- pow_succ_r.
 apply div_pos; order'.
 rewrite <- (pow_1_r 2), <- 2 shiftr_div_pow2 by order'.
 rewrite <- shiftr_ldiff, H, shiftr_div_pow2, pow_1_r, div_0_l; order'.
 rewrite <- 2 bit0_mod.
 apply bits_inj_iff in H. specialize (H 0).
 rewrite ldiff_spec, bits_0 in H.
 destruct a.[0], b.[0]; try discriminate; simpl; order'.
 (* main *)
 intros a b Hb Hd.
 assert (Ha : 0<=a).
  apply le_ngt; intros Ha'. apply (lt_irrefl 0). rewrite <- Hd at 1.
  apply ldiff_neg. now split.
 split; trivial. apply (AUX a); try split; trivial. apply pow_gt_lin_r; order'.
Qed.

(** Subtraction can be a ldiff when the opposite ldiff is null. *)

Lemma sub_nocarry_ldiff : forall a b, ldiff b a == 0 ->
 a-b == ldiff a b.
Proof.
 intros a b H.
 apply add_cancel_r with b.
 rewrite sub_add.
 symmetry.
 rewrite add_nocarry_lxor; trivial.
 bitwise.
 apply bits_inj_iff in H. specialize (H m).
 rewrite ldiff_spec, bits_0 in H.
 now destruct a.[m], b.[m].
 apply land_ldiff.
Qed.

(** Adding numbers with no common bits cannot lead to a much bigger number *)

Lemma add_nocarry_lt_pow2 : forall a b n, land a b == 0 ->
 a < 2^n -> b < 2^n -> a+b < 2^n.
Proof.
 intros a b n H Ha Hb.
 destruct (le_gt_cases a 0) as [Ha'|Ha'].
 apply le_lt_trans with (0+b). now apply add_le_mono_r. now nzsimpl.
 destruct (le_gt_cases b 0) as [Hb'|Hb'].
 apply le_lt_trans with (a+0). now apply add_le_mono_l. now nzsimpl.
 rewrite add_nocarry_lxor by order.
 destruct (lt_ge_cases 0 (lxor a b)); [|apply le_lt_trans with 0; order_pos].
 apply log2_lt_pow2; trivial.
 apply log2_lt_pow2 in Ha; trivial.
 apply log2_lt_pow2 in Hb; trivial.
 apply le_lt_trans with (max (log2 a) (log2 b)).
 apply log2_lxor; order.
 destruct (le_ge_cases (log2 a) (log2 b));
  [rewrite max_r|rewrite max_l]; order.
Qed.

Lemma add_nocarry_mod_lt_pow2 : forall a b n, 0<=n -> land a b == 0 ->
 a mod 2^n + b mod 2^n < 2^n.
Proof.
 intros a b n Hn H.
 apply add_nocarry_lt_pow2.
 bitwise.
 destruct (le_gt_cases n m).
 rewrite mod_pow2_bits_high; now split.
 now rewrite !mod_pow2_bits_low, <- land_spec, H, bits_0.
 apply mod_pos_bound; order_pos.
 apply mod_pos_bound; order_pos.
Qed.

End ZBitsProp.