summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZAdd.v
blob: df941d90a346c95a3ebdf0fc0901d32be23e5877 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

(*i $Id: ZAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*)

Require Export ZBase.

Module ZAddPropFunct (Import ZAxiomsMod : ZAxiomsSig).
Module Export ZBasePropMod := ZBasePropFunct ZAxiomsMod.
Open Local Scope IntScope.

Theorem Zadd_wd :
  forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> n1 + m1 == n2 + m2.
Proof NZadd_wd.

Theorem Zadd_0_l : forall n : Z, 0 + n == n.
Proof NZadd_0_l.

Theorem Zadd_succ_l : forall n m : Z, (S n) + m == S (n + m).
Proof NZadd_succ_l.

Theorem Zsub_0_r : forall n : Z, n - 0 == n.
Proof NZsub_0_r.

Theorem Zsub_succ_r : forall n m : Z, n - (S m) == P (n - m).
Proof NZsub_succ_r.

Theorem Zopp_0 : - 0 == 0.
Proof Zopp_0.

Theorem Zopp_succ : forall n : Z, - (S n) == P (- n).
Proof Zopp_succ.

(* Theorems that are valid for both natural numbers and integers *)

Theorem Zadd_0_r : forall n : Z, n + 0 == n.
Proof NZadd_0_r.

Theorem Zadd_succ_r : forall n m : Z, n + S m == S (n + m).
Proof NZadd_succ_r.

Theorem Zadd_comm : forall n m : Z, n + m == m + n.
Proof NZadd_comm.

Theorem Zadd_assoc : forall n m p : Z, n + (m + p) == (n + m) + p.
Proof NZadd_assoc.

Theorem Zadd_shuffle1 : forall n m p q : Z, (n + m) + (p + q) == (n + p) + (m + q).
Proof NZadd_shuffle1.

Theorem Zadd_shuffle2 : forall n m p q : Z, (n + m) + (p + q) == (n + q) + (m + p).
Proof NZadd_shuffle2.

Theorem Zadd_1_l : forall n : Z, 1 + n == S n.
Proof NZadd_1_l.

Theorem Zadd_1_r : forall n : Z, n + 1 == S n.
Proof NZadd_1_r.

Theorem Zadd_cancel_l : forall n m p : Z, p + n == p + m <-> n == m.
Proof NZadd_cancel_l.

Theorem Zadd_cancel_r : forall n m p : Z, n + p == m + p <-> n == m.
Proof NZadd_cancel_r.

(* Theorems that are either not valid on N or have different proofs on N and Z *)

Theorem Zadd_pred_l : forall n m : Z, P n + m == P (n + m).
Proof.
intros n m.
rewrite <- (Zsucc_pred n) at 2.
rewrite Zadd_succ_l. now rewrite Zpred_succ.
Qed.

Theorem Zadd_pred_r : forall n m : Z, n + P m == P (n + m).
Proof.
intros n m; rewrite (Zadd_comm n (P m)), (Zadd_comm n m);
apply Zadd_pred_l.
Qed.

Theorem Zadd_opp_r : forall n m : Z, n + (- m) == n - m.
Proof.
NZinduct m.
rewrite Zopp_0; rewrite Zsub_0_r; now rewrite Zadd_0_r.
intro m. rewrite Zopp_succ, Zsub_succ_r, Zadd_pred_r; now rewrite Zpred_inj_wd.
Qed.

Theorem Zsub_0_l : forall n : Z, 0 - n == - n.
Proof.
intro n; rewrite <- Zadd_opp_r; now rewrite Zadd_0_l.
Qed.

Theorem Zsub_succ_l : forall n m : Z, S n - m == S (n - m).
Proof.
intros n m; do 2 rewrite <- Zadd_opp_r; now rewrite Zadd_succ_l.
Qed.

Theorem Zsub_pred_l : forall n m : Z, P n - m == P (n - m).
Proof.
intros n m. rewrite <- (Zsucc_pred n) at 2.
rewrite Zsub_succ_l; now rewrite Zpred_succ.
Qed.

Theorem Zsub_pred_r : forall n m : Z, n - (P m) == S (n - m).
Proof.
intros n m. rewrite <- (Zsucc_pred m) at 2.
rewrite Zsub_succ_r; now rewrite Zsucc_pred.
Qed.

Theorem Zopp_pred : forall n : Z, - (P n) == S (- n).
Proof.
intro n. rewrite <- (Zsucc_pred n) at 2.
rewrite Zopp_succ. now rewrite Zsucc_pred.
Qed.

Theorem Zsub_diag : forall n : Z, n - n == 0.
Proof.
NZinduct n.
now rewrite Zsub_0_r.
intro n. rewrite Zsub_succ_r, Zsub_succ_l; now rewrite Zpred_succ.
Qed.

Theorem Zadd_opp_diag_l : forall n : Z, - n + n == 0.
Proof.
intro n; now rewrite Zadd_comm, Zadd_opp_r, Zsub_diag.
Qed.

Theorem Zadd_opp_diag_r : forall n : Z, n + (- n) == 0.
Proof.
intro n; rewrite Zadd_comm; apply Zadd_opp_diag_l.
Qed.

Theorem Zadd_opp_l : forall n m : Z, - m + n == n - m.
Proof.
intros n m; rewrite <- Zadd_opp_r; now rewrite Zadd_comm.
Qed.

Theorem Zadd_sub_assoc : forall n m p : Z, n + (m - p) == (n + m) - p.
Proof.
intros n m p; do 2 rewrite <- Zadd_opp_r; now rewrite Zadd_assoc.
Qed.

Theorem Zopp_involutive : forall n : Z, - (- n) == n.
Proof.
NZinduct n.
now do 2 rewrite Zopp_0.
intro n. rewrite Zopp_succ, Zopp_pred; now rewrite Zsucc_inj_wd.
Qed.

Theorem Zopp_add_distr : forall n m : Z, - (n + m) == - n + (- m).
Proof.
intros n m; NZinduct n.
rewrite Zopp_0; now do 2 rewrite Zadd_0_l.
intro n. rewrite Zadd_succ_l; do 2 rewrite Zopp_succ; rewrite Zadd_pred_l.
now rewrite Zpred_inj_wd.
Qed.

Theorem Zopp_sub_distr : forall n m : Z, - (n - m) == - n + m.
Proof.
intros n m; rewrite <- Zadd_opp_r, Zopp_add_distr.
now rewrite Zopp_involutive.
Qed.

Theorem Zopp_inj : forall n m : Z, - n == - m -> n == m.
Proof.
intros n m H. apply Zopp_wd in H. now do 2 rewrite Zopp_involutive in H.
Qed.

Theorem Zopp_inj_wd : forall n m : Z, - n == - m <-> n == m.
Proof.
intros n m; split; [apply Zopp_inj | apply Zopp_wd].
Qed.

Theorem Zeq_opp_l : forall n m : Z, - n == m <-> n == - m.
Proof.
intros n m. now rewrite <- (Zopp_inj_wd (- n) m), Zopp_involutive.
Qed.

Theorem Zeq_opp_r : forall n m : Z, n == - m <-> - n == m.
Proof.
symmetry; apply Zeq_opp_l.
Qed.

Theorem Zsub_add_distr : forall n m p : Z, n - (m + p) == (n - m) - p.
Proof.
intros n m p; rewrite <- Zadd_opp_r, Zopp_add_distr, Zadd_assoc.
now do 2 rewrite Zadd_opp_r.
Qed.

Theorem Zsub_sub_distr : forall n m p : Z, n - (m - p) == (n - m) + p.
Proof.
intros n m p; rewrite <- Zadd_opp_r, Zopp_sub_distr, Zadd_assoc.
now rewrite Zadd_opp_r.
Qed.

Theorem sub_opp_l : forall n m : Z, - n - m == - m - n.
Proof.
intros n m. do 2 rewrite <- Zadd_opp_r. now rewrite Zadd_comm.
Qed.

Theorem Zsub_opp_r : forall n m : Z, n - (- m) == n + m.
Proof.
intros n m; rewrite <- Zadd_opp_r; now rewrite Zopp_involutive.
Qed.

Theorem Zadd_sub_swap : forall n m p : Z, n + m - p == n - p + m.
Proof.
intros n m p. rewrite <- Zadd_sub_assoc, <- (Zadd_opp_r n p), <- Zadd_assoc.
now rewrite Zadd_opp_l.
Qed.

Theorem Zsub_cancel_l : forall n m p : Z, n - m == n - p <-> m == p.
Proof.
intros n m p. rewrite <- (Zadd_cancel_l (n - m) (n - p) (- n)).
do 2 rewrite Zadd_sub_assoc. rewrite Zadd_opp_diag_l; do 2 rewrite Zsub_0_l.
apply Zopp_inj_wd.
Qed.

Theorem Zsub_cancel_r : forall n m p : Z, n - p == m - p <-> n == m.
Proof.
intros n m p.
stepl (n - p + p == m - p + p) by apply Zadd_cancel_r.
now do 2 rewrite <- Zsub_sub_distr, Zsub_diag, Zsub_0_r.
Qed.

(* The next several theorems are devoted to moving terms from one side of
an equation to the other. The name contains the operation in the original
equation (add or sub) and the indication whether the left or right term
is moved. *)

Theorem Zadd_move_l : forall n m p : Z, n + m == p <-> m == p - n.
Proof.
intros n m p.
stepl (n + m - n == p - n) by apply Zsub_cancel_r.
now rewrite Zadd_comm, <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r.
Qed.

Theorem Zadd_move_r : forall n m p : Z, n + m == p <-> n == p - m.
Proof.
intros n m p; rewrite Zadd_comm; now apply Zadd_move_l.
Qed.

(* The two theorems above do not allow rewriting subformulas of the form
n - m == p to n == p + m since subtraction is in the right-hand side of
the equation. Hence the following two theorems. *)

Theorem Zsub_move_l : forall n m p : Z, n - m == p <-> - m == p - n.
Proof.
intros n m p; rewrite <- (Zadd_opp_r n m); apply Zadd_move_l.
Qed.

Theorem Zsub_move_r : forall n m p : Z, n - m == p <-> n == p + m.
Proof.
intros n m p; rewrite <- (Zadd_opp_r n m). now rewrite Zadd_move_r, Zsub_opp_r.
Qed.

Theorem Zadd_move_0_l : forall n m : Z, n + m == 0 <-> m == - n.
Proof.
intros n m; now rewrite Zadd_move_l, Zsub_0_l.
Qed.

Theorem Zadd_move_0_r : forall n m : Z, n + m == 0 <-> n == - m.
Proof.
intros n m; now rewrite Zadd_move_r, Zsub_0_l.
Qed.

Theorem Zsub_move_0_l : forall n m : Z, n - m == 0 <-> - m == - n.
Proof.
intros n m. now rewrite Zsub_move_l, Zsub_0_l.
Qed.

Theorem Zsub_move_0_r : forall n m : Z, n - m == 0 <-> n == m.
Proof.
intros n m. now rewrite Zsub_move_r, Zadd_0_l.
Qed.

(* The following section is devoted to cancellation of like terms. The name
includes the first operator and the position of the term being canceled. *)

Theorem Zadd_simpl_l : forall n m : Z, n + m - n == m.
Proof.
intros; now rewrite Zadd_sub_swap, Zsub_diag, Zadd_0_l.
Qed.

Theorem Zadd_simpl_r : forall n m : Z, n + m - m == n.
Proof.
intros; now rewrite <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r.
Qed.

Theorem Zsub_simpl_l : forall n m : Z, - n - m + n == - m.
Proof.
intros; now rewrite <- Zadd_sub_swap, Zadd_opp_diag_l, Zsub_0_l.
Qed.

Theorem Zsub_simpl_r : forall n m : Z, n - m + m == n.
Proof.
intros; now rewrite <- Zsub_sub_distr, Zsub_diag, Zsub_0_r.
Qed.

(* Now we have two sums or differences; the name includes the two operators
and the position of the terms being canceled *)

Theorem Zadd_add_simpl_l_l : forall n m p : Z, (n + m) - (n + p) == m - p.
Proof.
intros n m p. now rewrite (Zadd_comm n m), <- Zadd_sub_assoc,
Zsub_add_distr, Zsub_diag, Zsub_0_l, Zadd_opp_r.
Qed.

Theorem Zadd_add_simpl_l_r : forall n m p : Z, (n + m) - (p + n) == m - p.
Proof.
intros n m p. rewrite (Zadd_comm p n); apply Zadd_add_simpl_l_l.
Qed.

Theorem Zadd_add_simpl_r_l : forall n m p : Z, (n + m) - (m + p) == n - p.
Proof.
intros n m p. rewrite (Zadd_comm n m); apply Zadd_add_simpl_l_l.
Qed.

Theorem Zadd_add_simpl_r_r : forall n m p : Z, (n + m) - (p + m) == n - p.
Proof.
intros n m p. rewrite (Zadd_comm p m); apply Zadd_add_simpl_r_l.
Qed.

Theorem Zsub_add_simpl_r_l : forall n m p : Z, (n - m) + (m + p) == n + p.
Proof.
intros n m p. now rewrite <- Zsub_sub_distr, Zsub_add_distr, Zsub_diag,
Zsub_0_l, Zsub_opp_r.
Qed.

Theorem Zsub_add_simpl_r_r : forall n m p : Z, (n - m) + (p + m) == n + p.
Proof.
intros n m p. rewrite (Zadd_comm p m); apply Zsub_add_simpl_r_l.
Qed.

(* Of course, there are many other variants *)

End ZAddPropFunct.