summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
blob: ff9f50a5551fde04d81f058307851318d951d95a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

Set Implicit Arguments.

Require Import ZArith.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.

Local Open Scope Z_scope.

Section DoubleLift.
 Variable w : Type.
 Variable w_0 : w.
 Variable w_WW : w -> w -> zn2z w.
 Variable w_W0 : w ->  zn2z w.
 Variable w_0W : w ->  zn2z w.
 Variable w_compare : w -> w -> comparison.
 Variable ww_compare : zn2z w -> zn2z w -> comparison.
 Variable w_head0 : w -> w.
 Variable w_tail0 : w -> w.
 Variable w_add: w -> w -> zn2z w.
 Variable w_add_mul_div : w -> w -> w -> w.
 Variable ww_sub: zn2z w -> zn2z w -> zn2z w.
 Variable w_digits : positive.
 Variable ww_Digits : positive.
 Variable w_zdigits : w.
 Variable ww_zdigits : zn2z w.
 Variable low: zn2z w -> w.

 Definition ww_head0 x :=
  match x with
  | W0 => ww_zdigits
  | WW xh xl =>
    match w_compare w_0 xh with
    | Eq => w_add w_zdigits (w_head0 xl)
    | _ => w_0W (w_head0 xh)
    end
  end.


 Definition ww_tail0 x :=
  match x with
  | W0 => ww_zdigits
  | WW xh xl =>
    match w_compare w_0 xl with
    | Eq => w_add w_zdigits (w_tail0 xh)
    | _ => w_0W (w_tail0 xl)
    end
  end.


  (* 0 < p < ww_digits *)
 Definition ww_add_mul_div p x y :=
  let zdigits := w_0W w_zdigits in
  match x, y with
  | W0, W0 => W0
  | W0, WW yh yl =>
    match ww_compare p zdigits with
    | Eq => w_0W yh
    | Lt => w_0W (w_add_mul_div (low p) w_0 yh)
    | Gt =>
      let n := low (ww_sub p zdigits) in
      w_WW (w_add_mul_div n w_0 yh) (w_add_mul_div n yh yl)
    end
  | WW xh xl, W0 =>
    match ww_compare p zdigits with
    | Eq => w_W0 xl
    | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl w_0)
    | Gt =>
      let n := low (ww_sub p zdigits) in
      w_W0 (w_add_mul_div n xl w_0)
    end
  | WW xh xl, WW yh yl =>
    match ww_compare p zdigits with
    | Eq => w_WW xl yh
    | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl yh)
    | Gt =>
      let n := low (ww_sub p zdigits) in
      w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl)
    end
  end.

 Section DoubleProof.
  Variable w_to_Z : w -> Z.

  Notation wB  := (base w_digits).
  Notation wwB := (base (ww_digits w_digits)).
  Notation "[| x |]" := (w_to_Z x)  (at level 0, x at level 99).
  Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).

  Variable spec_w_0   : [|w_0|] = 0.
  Variable spec_to_Z  : forall x, 0 <= [|x|] < wB.
  Variable spec_to_w_Z  : forall x, 0 <= [[x]] < wwB.
  Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
  Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
  Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
  Variable spec_compare : forall x y,
   w_compare x y = Z.compare [|x|] [|y|].
  Variable spec_ww_compare : forall x y,
   ww_compare x y = Z.compare [[x]] [[y]].
  Variable spec_ww_digits : ww_Digits = xO w_digits.
  Variable spec_w_head00  : forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits.
  Variable spec_w_head0  : forall x,  0 < [|x|] ->
	 wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB.
  Variable spec_w_tail00  : forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits.
  Variable spec_w_tail0 : forall x, 0 < [|x|] ->
         exists y, 0 <= y /\ [|x|] = (2* y + 1) * (2 ^ [|w_tail0 x|]).
  Variable spec_w_add_mul_div : forall x y p,
       [|p|] <= Zpos w_digits ->
       [| w_add_mul_div p x y |] =
         ([|x|] * (2 ^ [|p|]) +
          [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
 Variable spec_w_add: forall x y,
   [[w_add x y]] = [|x|] + [|y|].
 Variable spec_ww_sub: forall x y,
   [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.

 Variable spec_zdigits : [| w_zdigits |] = Zpos w_digits.
 Variable spec_low: forall x, [| low x|] = [[x]] mod wB.

 Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos ww_Digits.

  Hint Resolve div_le_0 div_lt w_to_Z_wwB: lift.
  Ltac zarith := auto with zarith lift.

  Lemma spec_ww_head00  : forall x, [[x]] = 0 -> [[ww_head0 x]] = Zpos ww_Digits.
  Proof.
  intros x; case x; unfold ww_head0.
    intros HH; rewrite spec_ww_zdigits; auto.
  intros xh xl; simpl; intros Hx.
  case (spec_to_Z xh); intros Hx1 Hx2.
  case (spec_to_Z xl); intros Hy1 Hy2.
  assert (F1: [|xh|] = 0).
  { Z.le_elim Hy1; auto.
    - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
      apply Z.lt_le_trans with (1 := Hy1); auto with zarith.
      pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]).
      apply Z.add_le_mono_r; auto with zarith.
    - Z.le_elim Hx1; auto.
      absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
      rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith.
      apply Z.mul_pos_pos; auto with zarith. }
  rewrite spec_compare. case Z.compare_spec.
    intros H; simpl.
    rewrite spec_w_add; rewrite spec_w_head00.
    rewrite spec_zdigits; rewrite spec_ww_digits.
    rewrite Pos2Z.inj_xO; auto with zarith.
  rewrite F1 in Hx; auto with zarith.
  rewrite spec_w_0; auto with zarith.
  rewrite spec_w_0; auto with zarith.
  Qed.

  Lemma spec_ww_head0  : forall x,  0 < [[x]] ->
	 wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB.
  Proof.
   clear spec_ww_zdigits.
   rewrite wwB_div_2;rewrite Z.mul_comm;rewrite wwB_wBwB.
   assert (U:= lt_0_wB w_digits); destruct x as [ |xh xl];simpl ww_to_Z;intros H.
   unfold Z.lt in H;discriminate H.
   rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0.
   rewrite <- H0 in *. simpl Z.add. simpl in H.
   case (spec_to_Z w_zdigits);
     case (spec_to_Z (w_head0 xl)); intros HH1 HH2 HH3 HH4.
   rewrite spec_w_add.
   rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith.
   case (spec_w_head0 H); intros H1 H2.
   rewrite Z.pow_2_r; fold wB; rewrite <- Z.mul_assoc; split.
     apply Z.mul_le_mono_nonneg_l; auto with zarith.
   apply Z.mul_lt_mono_pos_l; auto with zarith.
   assert (H1 := spec_w_head0 H0).
   rewrite spec_w_0W.
   split.
   rewrite Z.mul_add_distr_l;rewrite Z.mul_assoc.
   apply Z.le_trans with (2 ^ [|w_head0 xh|] * [|xh|] * wB).
   rewrite Z.mul_comm; zarith.
   assert (0 <= 2 ^ [|w_head0 xh|] * [|xl|]);zarith.
   assert (H2:=spec_to_Z xl);apply Z.mul_nonneg_nonneg;zarith.
   case (spec_to_Z (w_head0 xh)); intros H2 _.
   generalize ([|w_head0 xh|]) H1 H2;clear H1 H2;
     intros p H1 H2.
   assert (Eq1 : 2^p < wB).
     rewrite <- (Z.mul_1_r (2^p));apply Z.le_lt_trans with (2^p*[|xh|]);zarith.
   assert (Eq2: p < Zpos w_digits).
    destruct (Z.le_gt_cases (Zpos w_digits) p);trivial;contradict  Eq1.
   apply Z.le_ngt;unfold base;apply Zpower_le_monotone;zarith.
   assert (Zpos w_digits = p + (Zpos w_digits - p)). ring.
   rewrite Z.pow_2_r.
   unfold base at 2;rewrite H3;rewrite Zpower_exp;zarith.
   rewrite <- Z.mul_assoc; apply Z.mul_lt_mono_pos_l; zarith.
   rewrite <- (Z.add_0_r (2^(Zpos w_digits - p)*wB));apply beta_lex_inv;zarith.
   apply Z.mul_lt_mono_pos_r with (2 ^ p); zarith.
   rewrite <- Zpower_exp;zarith.
   rewrite Z.mul_comm;ring_simplify (Zpos w_digits - p + p);fold wB;zarith.
   assert (H1 := spec_to_Z xh);zarith.
  Qed.

  Lemma spec_ww_tail00  : forall x, [[x]] = 0 -> [[ww_tail0 x]] = Zpos ww_Digits.
  Proof.
  intros x; case x; unfold ww_tail0.
    intros HH; rewrite spec_ww_zdigits; auto.
  intros xh xl; simpl; intros Hx.
  case (spec_to_Z xh); intros Hx1 Hx2.
  case (spec_to_Z xl); intros Hy1 Hy2.
  assert (F1: [|xh|] = 0).
  { Z.le_elim Hy1; auto.
    - absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
      apply Z.lt_le_trans with (1 := Hy1); auto with zarith.
      pattern [|xl|] at 1; rewrite <- (Z.add_0_l [|xl|]).
      apply Z.add_le_mono_r; auto with zarith.
    - Z.le_elim Hx1; auto.
      absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
      rewrite <- Hy1; rewrite Z.add_0_r; auto with zarith.
      apply Z.mul_pos_pos; auto with zarith. }
  assert (F2: [|xl|] = 0).
    rewrite F1 in Hx; auto with zarith.
  rewrite spec_compare; case Z.compare_spec.
    intros H; simpl.
    rewrite spec_w_add; rewrite spec_w_tail00; auto.
    rewrite spec_zdigits; rewrite spec_ww_digits.
    rewrite Pos2Z.inj_xO; auto with zarith.
  rewrite spec_w_0; auto with zarith.
  rewrite spec_w_0; auto with zarith.
  Qed.

  Lemma spec_ww_tail0  : forall x,  0 < [[x]] ->
	 exists y, 0 <= y /\ [[x]] = (2 * y + 1) * 2 ^ [[ww_tail0 x]].
  Proof.
   clear spec_ww_zdigits.
   destruct x as [ |xh xl];simpl ww_to_Z;intros H.
   unfold Z.lt in H;discriminate H.
   rewrite spec_compare, spec_w_0. case Z.compare_spec; intros H0.
   rewrite <- H0; rewrite Z.add_0_r.
   case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
   generalize H; rewrite <- H0; rewrite Z.add_0_r; clear H; intros H.
   case (@spec_w_tail0 xh).
     apply Z.mul_lt_mono_pos_r with wB; auto with zarith.
     unfold base; auto with zarith.
   intros z (Hz1, Hz2); exists z; split; auto.
   rewrite spec_w_add; rewrite (fun x => Z.add_comm [|x|]).
   rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith.
   rewrite Z.mul_assoc; rewrite <- Hz2; auto.

   case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
   case (spec_w_tail0 H0); intros z (Hz1, Hz2).
   assert (Hp: [|w_tail0 xl|] < Zpos w_digits).
     case (Z.le_gt_cases (Zpos w_digits) [|w_tail0 xl|]); auto; intros H1.
     absurd (2 ^  (Zpos w_digits) <= 2 ^ [|w_tail0 xl|]).
       apply Z.lt_nge.
       case (spec_to_Z xl); intros HH3 HH4.
       apply Z.le_lt_trans with (2 := HH4).
       apply Z.le_trans with (1 * 2 ^ [|w_tail0 xl|]); auto with zarith.
       rewrite Hz2.
       apply Z.mul_le_mono_nonneg_r; auto with zarith.
     apply Zpower_le_monotone; auto with zarith.
   exists ([|xh|] * (2 ^ ((Zpos w_digits - [|w_tail0 xl|]) - 1)) + z); split.
     apply Z.add_nonneg_nonneg; auto.
     apply Z.mul_nonneg_nonneg; auto with zarith.
     case (spec_to_Z xh); auto.
   rewrite spec_w_0W.
   rewrite (Z.mul_add_distr_l 2); rewrite <- Z.add_assoc.
   rewrite Z.mul_add_distr_r; rewrite <- Hz2.
   apply f_equal2 with (f := Z.add); auto.
   rewrite (Z.mul_comm 2).
   repeat rewrite <- Z.mul_assoc.
   apply f_equal2 with (f := Z.mul); auto.
   case (spec_to_Z (w_tail0 xl)); intros HH3 HH4.
   pattern 2 at 2; rewrite <- Z.pow_1_r.
   lazy beta; repeat rewrite <- Zpower_exp; auto with zarith.
   unfold base; apply f_equal with (f := Z.pow 2); auto with zarith.

   contradict H0; case (spec_to_Z xl); auto with zarith.
  Qed.

  Hint Rewrite Zdiv_0_l Z.mul_0_l Z.add_0_l Z.mul_0_r Z.add_0_r
    spec_w_W0 spec_w_0W spec_w_WW spec_w_0
    (wB_div w_digits w_to_Z spec_to_Z)
    (wB_div_plus w_digits w_to_Z spec_to_Z) : w_rewrite.
  Ltac w_rewrite := autorewrite with w_rewrite;trivial.

  Lemma spec_ww_add_mul_div_aux : forall xh xl yh yl p,
   let zdigits := w_0W w_zdigits in
    [[p]] <= Zpos (xO w_digits) ->
      [[match ww_compare p zdigits with
        | Eq => w_WW xl yh
        | Lt => w_WW (w_add_mul_div (low p) xh xl)
                     (w_add_mul_div (low p) xl yh)
        | Gt =>
              let n := low (ww_sub p zdigits) in
            w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl)
        end]] =
      ([[WW xh xl]] * (2^[[p]]) +
       [[WW yh yl]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
  Proof.
   clear spec_ww_zdigits.
   intros xh xl yh yl p zdigits;assert (HwwB := wwB_pos w_digits).
   case (spec_to_w_Z p); intros Hv1 Hv2.
   replace (Zpos (xO w_digits)) with (Zpos w_digits + Zpos w_digits).
   2 : rewrite Pos2Z.inj_xO;ring.
   replace (Zpos w_digits + Zpos w_digits - [[p]]) with
     (Zpos w_digits + (Zpos w_digits - [[p]])). 2:ring.
   intros Hp; assert (Hxh := spec_to_Z xh);assert (Hxl:=spec_to_Z xl);
   assert (Hx := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl));
   simpl in Hx;assert (Hyh := spec_to_Z yh);assert (Hyl:=spec_to_Z yl);
   assert (Hy:=spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW yh yl));simpl in Hy.
   rewrite spec_ww_compare; case Z.compare_spec; intros H1.
   rewrite H1; unfold zdigits; rewrite spec_w_0W.
   rewrite spec_zdigits; rewrite Z.sub_diag; rewrite Z.add_0_r.
   simpl ww_to_Z; w_rewrite;zarith.
   fold wB.
   rewrite Z.mul_add_distr_r;rewrite <- Z.mul_assoc;rewrite <- Z.add_assoc.
   rewrite <- Z.pow_2_r.
   rewrite <- wwB_wBwB;apply Zmod_unique with [|xh|].
   exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xl yh)). ring.
   simpl ww_to_Z; w_rewrite;zarith.
   assert (HH0: [|low p|] = [[p]]).
     rewrite spec_low.
     apply Zmod_small.
     case (spec_to_w_Z p); intros HH1 HH2; split; auto.
     generalize H1; unfold zdigits; rewrite spec_w_0W;
      rewrite spec_zdigits; intros tmp.
     apply Z.lt_le_trans with (1 := tmp).
     unfold base.
     apply Zpower2_le_lin; auto with zarith.
   2: generalize H1; unfold zdigits; rewrite spec_w_0W;
      rewrite spec_zdigits; auto with zarith.
   generalize H1; unfold zdigits; rewrite spec_w_0W;
      rewrite spec_zdigits; auto; clear H1; intros H1.
   assert (HH: [|low p|] <= Zpos w_digits).
     rewrite HH0; auto with zarith.
   repeat rewrite spec_w_add_mul_div with (1 := HH).
   rewrite HH0.
   rewrite Z.mul_add_distr_r.
   pattern ([|xl|] * 2 ^ [[p]]) at 2;
   rewrite shift_unshift_mod with (n:= Zpos w_digits);fold wB;zarith.
   replace ([|xh|] * wB * 2^[[p]]) with ([|xh|] * 2^[[p]] * wB). 2:ring.
   rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite <- Z.add_assoc.
   unfold base at 5;rewrite <- Zmod_shift_r;zarith.
   unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits));
   fold wB;fold wwB;zarith.
   rewrite wwB_wBwB;rewrite Z.pow_2_r; rewrite  Zmult_mod_distr_r;zarith.
   unfold ww_digits;rewrite Pos2Z.inj_xO;zarith. apply Z_mod_lt;zarith.
   split;zarith. apply Zdiv_lt_upper_bound;zarith.
   rewrite <- Zpower_exp;zarith.
   ring_simplify ([[p]] + (Zpos w_digits - [[p]]));fold wB;zarith.
   assert (Hv: [[p]] > Zpos w_digits).
     generalize H1; clear H1.
     unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; auto with zarith.
   clear H1.
   assert (HH0: [|low (ww_sub p zdigits)|] = [[p]] - Zpos w_digits).
     rewrite spec_low.
     rewrite spec_ww_sub.
     unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits.
     rewrite <- Zmod_div_mod; auto with zarith.
     rewrite Zmod_small; auto with zarith.
     split; auto with zarith.
     apply Z.le_lt_trans with (Zpos w_digits); auto with zarith.
     unfold base; apply Zpower2_lt_lin; auto with zarith.
     exists wB; unfold base.
     unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits).
     rewrite <- Zpower_exp; auto with zarith.
     apply f_equal with (f := fun x => 2 ^ x); auto with zarith.
   assert (HH: [|low (ww_sub p zdigits)|] <= Zpos w_digits).
     rewrite HH0; auto with zarith.
   replace (Zpos w_digits + (Zpos w_digits - [[p]])) with
       (Zpos w_digits - ([[p]] - Zpos w_digits)); zarith.
   lazy zeta; simpl ww_to_Z; w_rewrite;zarith.
   repeat rewrite spec_w_add_mul_div;zarith.
   rewrite HH0.
   pattern wB at 5;replace wB with
    (2^(([[p]] - Zpos w_digits)
         + (Zpos w_digits - ([[p]] - Zpos w_digits)))).
   rewrite Zpower_exp;zarith. rewrite Z.mul_assoc.
   rewrite Z_div_plus_l;zarith.
   rewrite shift_unshift_mod with (a:= [|yh|]) (p:= [[p]] - Zpos w_digits)
    (n := Zpos w_digits);zarith. fold wB.
   set (u := [[p]] - Zpos w_digits).
   replace [[p]] with (u + Zpos w_digits);zarith.
   rewrite Zpower_exp;zarith. rewrite Z.mul_assoc. fold wB.
   repeat rewrite Z.add_assoc. rewrite <- Z.mul_add_distr_r.
   repeat rewrite <- Z.add_assoc.
   unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits));
   fold wB;fold wwB;zarith.
   unfold base;rewrite Zmod_shift_r with (a:= Zpos w_digits)
   (b:= Zpos w_digits);fold wB;fold wwB;zarith.
   rewrite wwB_wBwB; rewrite Z.pow_2_r; rewrite  Zmult_mod_distr_r;zarith.
   rewrite Z.mul_add_distr_r.
   replace ([|xh|] * wB * 2 ^ u) with
     ([|xh|]*2^u*wB). 2:ring.
   repeat rewrite <- Z.add_assoc.
   rewrite (Z.add_comm ([|xh|] * 2 ^ u * wB)).
   rewrite Z_mod_plus;zarith. rewrite Z_mod_mult;zarith.
   unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith.
   unfold u; split;zarith.
   split;zarith. unfold u; apply Zdiv_lt_upper_bound;zarith.
   rewrite <- Zpower_exp;zarith.
   fold u.
   ring_simplify (u + (Zpos w_digits - u)); fold
   wB;zarith. unfold ww_digits;rewrite Pos2Z.inj_xO;zarith.
   unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith.
   unfold u; split;zarith.
   unfold u; split;zarith.
   apply Zdiv_lt_upper_bound;zarith.
   rewrite <- Zpower_exp;zarith.
   fold u.
   ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith.
   unfold u;zarith.
   unfold u;zarith.
   set (u := [[p]] - Zpos w_digits).
   ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith.
  Qed.

  Lemma spec_ww_add_mul_div : forall x y p,
       [[p]] <= Zpos (xO w_digits) ->
       [[ ww_add_mul_div p x y ]] =
         ([[x]] * (2^[[p]]) +
          [[y]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
  Proof.
   clear spec_ww_zdigits.
   intros x y p H.
   destruct x as [ |xh xl];
   [assert (H1 := @spec_ww_add_mul_div_aux w_0 w_0)
   |assert (H1 := @spec_ww_add_mul_div_aux xh xl)];
   (destruct y as [ |yh yl];
    [generalize (H1 w_0 w_0 p H) | generalize (H1 yh yl p H)];
    clear H1;w_rewrite);simpl ww_add_mul_div.
   replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
   intros Heq;rewrite <- Heq;clear Heq; auto.
   rewrite spec_ww_compare. case Z.compare_spec; intros H1; w_rewrite.
   rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
   generalize H1; w_rewrite; rewrite spec_zdigits; clear H1; intros H1.
   assert (HH0: [|low p|] = [[p]]).
     rewrite spec_low.
     apply Zmod_small.
     case (spec_to_w_Z p); intros HH1 HH2; split; auto.
     apply Z.lt_le_trans with (1 := H1).
     unfold base; apply Zpower2_le_lin; auto with zarith.
   rewrite HH0; auto with zarith.
   replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
   intros Heq;rewrite <- Heq;clear Heq.
   generalize (spec_ww_compare p (w_0W w_zdigits));
     case ww_compare; intros H1; w_rewrite.
   rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
   rewrite Pos2Z.inj_xO in H;zarith.
   assert (HH: [|low (ww_sub p (w_0W w_zdigits)) |] = [[p]] - Zpos w_digits).
     symmetry in H1; change ([[p]] > [[w_0W w_zdigits]]) in H1.
     revert H1.
     rewrite spec_low.
     rewrite spec_ww_sub; w_rewrite; intros H1.
     rewrite <- Zmod_div_mod; auto with zarith.
     rewrite Zmod_small; auto with zarith.
     split; auto with zarith.
     apply Z.le_lt_trans with (Zpos w_digits); auto with zarith.
     unfold base; apply Zpower2_lt_lin; auto with zarith.
     unfold base; auto with zarith.
     unfold base; auto with zarith.
     exists wB; unfold base.
     unfold ww_digits; rewrite (Pos2Z.inj_xO w_digits).
     rewrite <- Zpower_exp; auto with zarith.
     apply f_equal with (f := fun x => 2 ^ x); auto with zarith.
  case (spec_to_Z xh); auto with zarith.
  Qed.

 End DoubleProof.

End DoubleLift.