1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
(*i $Id: DoubleDivn1.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
Set Implicit Arguments.
Require Import ZArith.
Require Import BigNumPrelude.
Require Import DoubleType.
Require Import DoubleBase.
Open Local Scope Z_scope.
Section GENDIVN1.
Variable w : Type.
Variable w_digits : positive.
Variable w_zdigits : w.
Variable w_0 : w.
Variable w_WW : w -> w -> zn2z w.
Variable w_head0 : w -> w.
Variable w_add_mul_div : w -> w -> w -> w.
Variable w_div21 : w -> w -> w -> w * w.
Variable w_compare : w -> w -> comparison.
Variable w_sub : w -> w -> w.
(* ** For proofs ** *)
Variable w_to_Z : w -> Z.
Notation wB := (base w_digits).
Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
(at level 0, x at level 99).
Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
Variable spec_to_Z : forall x, 0 <= [| x |] < wB.
Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits.
Variable spec_0 : [|w_0|] = 0.
Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
Variable spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB.
Variable spec_add_mul_div : forall x y p,
[|p|] <= Zpos w_digits ->
[| w_add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
Variable spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := w_div21 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Variable spec_compare :
forall x y,
match w_compare x y with
| Eq => [|x|] = [|y|]
| Lt => [|x|] < [|y|]
| Gt => [|x|] > [|y|]
end.
Variable spec_sub: forall x y,
[|w_sub x y|] = ([|x|] - [|y|]) mod wB.
Section DIVAUX.
Variable b2p : w.
Variable b2p_le : wB/2 <= [|b2p|].
Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h :=
let (hh,hl) := double_split w_0 n h in
let (qh,rh) := divn1 r hh in
let (ql,rl) := divn1 rh hl in
(double_WW w_WW n qh ql, rl).
Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w :=
match n return w -> word w n -> word w n * w with
| O => fun r x => w_div21 r x b2p
| S n => double_divn1_0_aux n (double_divn1_0 n)
end.
Lemma spec_split : forall (n : nat) (x : zn2z (word w n)),
let (h, l) := double_split w_0 n x in
[!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!].
Proof (spec_double_split w_0 w_digits w_to_Z spec_0).
Lemma spec_double_divn1_0 : forall n r a,
[|r|] < [|b2p|] ->
let (q,r') := double_divn1_0 n r a in
[|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\
0 <= [|r'|] < [|b2p|].
Proof.
induction n;intros.
exact (spec_div21 a b2p_le H).
simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux.
assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl).
rewrite H1.
assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh).
destruct H2.
assert ([|rh|] < [|b2p|]). omega.
assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl).
destruct H4;split;trivial.
rewrite spec_double_WW;trivial.
rewrite <- double_wB_wwB.
rewrite Zmult_assoc;rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
rewrite H0;rewrite Zmult_plus_distr_l;rewrite <- Zplus_assoc.
rewrite H4;ring.
Qed.
Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h :=
let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl.
Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w :=
match n return w -> word w n -> w with
| O => fun r x => snd (w_div21 r x b2p)
| S n => double_modn1_0_aux n (double_modn1_0 n)
end.
Lemma spec_double_modn1_0 : forall n r x,
double_modn1_0 n r x = snd (double_divn1_0 n r x).
Proof.
induction n;simpl;intros;trivial.
unfold double_modn1_0_aux, double_divn1_0_aux.
destruct (double_split w_0 n x) as (hh,hl).
rewrite (IHn r hh).
destruct (double_divn1_0 n r hh) as (qh,rh);simpl.
rewrite IHn. destruct (double_divn1_0 n rh hl);trivial.
Qed.
Variable p : w.
Variable p_bounded : [|p|] <= Zpos w_digits.
Lemma spec_add_mul_divp : forall x y,
[| w_add_mul_div p x y |] =
([|x|] * (2 ^ [|p|]) +
[|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
Proof.
intros;apply spec_add_mul_div;auto.
Qed.
Definition double_divn1_p_aux n
(divn1 : w -> word w n -> word w n -> word w n * w) r h l :=
let (hh,hl) := double_split w_0 n h in
let (lh,ll) := double_split w_0 n l in
let (qh,rh) := divn1 r hh hl in
let (ql,rl) := divn1 rh hl lh in
(double_WW w_WW n qh ql, rl).
Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w :=
match n return w -> word w n -> word w n -> word w n * w with
| O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p
| S n => double_divn1_p_aux n (double_divn1_p n)
end.
Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (double_digits w_digits n).
Proof.
(*
induction n;simpl. destruct p_bounded;trivial.
case (spec_to_Z p); rewrite Zpos_xO;auto with zarith.
*)
induction n;simpl. trivial.
case (spec_to_Z p); rewrite Zpos_xO;auto with zarith.
Qed.
Lemma spec_double_divn1_p : forall n r h l,
[|r|] < [|b2p|] ->
let (q,r') := double_divn1_p n r h l in
[|r|] * double_wB w_digits n +
([!n|h!]*2^[|p|] +
[!n|l!] / (2^(Zpos(double_digits w_digits n) - [|p|])))
mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\
0 <= [|r'|] < [|b2p|].
Proof.
case (spec_to_Z p); intros HH0 HH1.
induction n;intros.
simpl (double_divn1_p 0 r h l).
unfold double_to_Z, double_wB, double_digits.
rewrite <- spec_add_mul_divp.
exact (spec_div21 (w_add_mul_div p h l) b2p_le H).
simpl (double_divn1_p (S n) r h l).
unfold double_divn1_p_aux.
assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl).
rewrite H1. rewrite <- double_wB_wwB.
assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll).
rewrite H2.
replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) +
(([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] +
([!n|lh!] * double_wB w_digits n + [!n|ll!]) /
2^(Zpos (double_digits w_digits (S n)) - [|p|])) mod
(double_wB w_digits n * double_wB w_digits n)) with
(([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] +
[!n|hl!] / 2^(Zpos (double_digits w_digits n) - [|p|])) mod
double_wB w_digits n) * double_wB w_digits n +
([!n|hl!] * 2^[|p|] +
[!n|lh!] / 2^(Zpos (double_digits w_digits n) - [|p|])) mod
double_wB w_digits n).
generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh);
intros (H3,H4);rewrite H3.
assert ([|rh|] < [|b2p|]). omega.
replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n +
([!n|hl!] * 2 ^ [|p|] +
[!n|lh!] / 2 ^ (Zpos (double_digits w_digits n) - [|p|])) mod
double_wB w_digits n) with
([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n +
([!n|hl!] * 2 ^ [|p|] +
[!n|lh!] / 2 ^ (Zpos (double_digits w_digits n) - [|p|])) mod
double_wB w_digits n)). 2:ring.
generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl);
intros (H5,H6);rewrite H5.
split;[rewrite spec_double_WW;trivial;ring|trivial].
assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh);
unfold double_wB,base in Uhh.
assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl);
unfold double_wB,base in Uhl.
assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh);
unfold double_wB,base in Ulh.
assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll);
unfold double_wB,base in Ull.
unfold double_wB,base.
assert (UU:=p_lt_double_digits n).
rewrite Zdiv_shift_r;auto with zarith.
2:change (Zpos (double_digits w_digits (S n)))
with (2*Zpos (double_digits w_digits n));auto with zarith.
replace (2 ^ (Zpos (double_digits w_digits (S n)) - [|p|])) with
(2^(Zpos (double_digits w_digits n) - [|p|])*2^Zpos (double_digits w_digits n)).
rewrite Zdiv_mult_cancel_r;auto with zarith.
rewrite Zmult_plus_distr_l with (p:= 2^[|p|]).
pattern ([!n|hl!] * 2^[|p|]) at 2;
rewrite (shift_unshift_mod (Zpos(double_digits w_digits n))([|p|])([!n|hl!]));
auto with zarith.
rewrite Zplus_assoc.
replace
([!n|hh!] * 2^Zpos (double_digits w_digits n)* 2^[|p|] +
([!n|hl!] / 2^(Zpos (double_digits w_digits n)-[|p|])*
2^Zpos(double_digits w_digits n)))
with
(([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl /
2^(Zpos (double_digits w_digits n)-[|p|]))
* 2^Zpos(double_digits w_digits n));try (ring;fail).
rewrite <- Zplus_assoc.
rewrite <- (Zmod_shift_r ([|p|]));auto with zarith.
replace
(2 ^ Zpos (double_digits w_digits n) * 2 ^ Zpos (double_digits w_digits n)) with
(2 ^ (Zpos (double_digits w_digits n) + Zpos (double_digits w_digits n))).
rewrite (Zmod_shift_r (Zpos (double_digits w_digits n)));auto with zarith.
replace (2 ^ (Zpos (double_digits w_digits n) + Zpos (double_digits w_digits n)))
with (2^Zpos(double_digits w_digits n) *2^Zpos(double_digits w_digits n)).
rewrite (Zmult_comm (([!n|hh!] * 2 ^ [|p|] +
[!n|hl!] / 2 ^ (Zpos (double_digits w_digits n) - [|p|])))).
rewrite Zmult_mod_distr_l;auto with zarith.
ring.
rewrite Zpower_exp;auto with zarith.
assert (0 < Zpos (double_digits w_digits n)). unfold Zlt;reflexivity.
auto with zarith.
apply Z_mod_lt;auto with zarith.
rewrite Zpower_exp;auto with zarith.
split;auto with zarith.
apply Zdiv_lt_upper_bound;auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace ([|p|] + (Zpos (double_digits w_digits n) - [|p|])) with
(Zpos(double_digits w_digits n));auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace (Zpos (double_digits w_digits (S n)) - [|p|]) with
(Zpos (double_digits w_digits n) - [|p|] +
Zpos (double_digits w_digits n));trivial.
change (Zpos (double_digits w_digits (S n))) with
(2*Zpos (double_digits w_digits n)). ring.
Qed.
Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:=
let (hh,hl) := double_split w_0 n h in
let (lh,ll) := double_split w_0 n l in
modn1 (modn1 r hh hl) hl lh.
Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w :=
match n return w -> word w n -> word w n -> w with
| O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p)
| S n => double_modn1_p_aux n (double_modn1_p n)
end.
Lemma spec_double_modn1_p : forall n r h l ,
double_modn1_p n r h l = snd (double_divn1_p n r h l).
Proof.
induction n;simpl;intros;trivial.
unfold double_modn1_p_aux, double_divn1_p_aux.
destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll).
rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh).
rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial.
Qed.
End DIVAUX.
Fixpoint high (n:nat) : word w n -> w :=
match n return word w n -> w with
| O => fun a => a
| S n =>
fun (a:zn2z (word w n)) =>
match a with
| W0 => w_0
| WW h l => high n h
end
end.
Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (double_digits w_digits n).
Proof.
induction n;simpl;auto with zarith.
change (Zpos (xO (double_digits w_digits n))) with
(2*Zpos (double_digits w_digits n)).
assert (0 < Zpos w_digits);auto with zarith.
exact (refl_equal Lt).
Qed.
Lemma spec_high : forall n (x:word w n),
[|high n x|] = [!n|x!] / 2^(Zpos (double_digits w_digits n) - Zpos w_digits).
Proof.
induction n;intros.
unfold high,double_digits,double_to_Z.
replace (Zpos w_digits - Zpos w_digits) with 0;try ring.
simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith.
assert (U2 := spec_double_digits n).
assert (U3 : 0 < Zpos w_digits). exact (refl_equal Lt).
destruct x;unfold high;fold high.
unfold double_to_Z,zn2z_to_Z;rewrite spec_0.
rewrite Zdiv_0_l;trivial.
assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0);
assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1).
simpl [!S n|WW w0 w1!].
unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith.
replace (2 ^ (Zpos (double_digits w_digits (S n)) - Zpos w_digits)) with
(2^(Zpos (double_digits w_digits n) - Zpos w_digits) *
2^Zpos (double_digits w_digits n)).
rewrite Zdiv_mult_cancel_r;auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace (Zpos (double_digits w_digits n) - Zpos w_digits +
Zpos (double_digits w_digits n)) with
(Zpos (double_digits w_digits (S n)) - Zpos w_digits);trivial.
change (Zpos (double_digits w_digits (S n))) with
(2*Zpos (double_digits w_digits n));ring.
change (Zpos (double_digits w_digits (S n))) with
(2*Zpos (double_digits w_digits n)); auto with zarith.
Qed.
Definition double_divn1 (n:nat) (a:word w n) (b:w) :=
let p := w_head0 b in
match w_compare p w_0 with
| Gt =>
let b2p := w_add_mul_div p b w_0 in
let ha := high n a in
let k := w_sub w_zdigits p in
let lsr_n := w_add_mul_div k w_0 in
let r0 := w_add_mul_div p w_0 ha in
let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in
(q, lsr_n r)
| _ => double_divn1_0 b n w_0 a
end.
Lemma spec_double_divn1 : forall n a b,
0 < [|b|] ->
let (q,r) := double_divn1 n a b in
[!n|a!] = [!n|q!] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
intros n a b H. unfold double_divn1.
case (spec_head0 H); intros H0 H1.
case (spec_to_Z (w_head0 b)); intros HH1 HH2.
generalize (spec_compare (w_head0 b) w_0); case w_compare;
rewrite spec_0; intros H2; auto with zarith.
assert (Hv1: wB/2 <= [|b|]).
generalize H0; rewrite H2; rewrite Zpower_0_r;
rewrite Zmult_1_l; auto.
assert (Hv2: [|w_0|] < [|b|]).
rewrite spec_0; auto.
generalize (spec_double_divn1_0 Hv1 n a Hv2).
rewrite spec_0;rewrite Zmult_0_l; rewrite Zplus_0_l; auto.
contradict H2; auto with zarith.
assert (HHHH : 0 < [|w_head0 b|]); auto with zarith.
assert ([|w_head0 b|] < Zpos w_digits).
case (Zle_or_lt (Zpos w_digits) [|w_head0 b|]); auto; intros HH.
assert (2 ^ [|w_head0 b|] < wB).
apply Zle_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith.
replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail).
apply Zmult_le_compat;auto with zarith.
assert (wB <= 2^[|w_head0 b|]).
unfold base;apply Zpower_le_monotone;auto with zarith. omega.
assert ([|w_add_mul_div (w_head0 b) b w_0|] =
2 ^ [|w_head0 b|] * [|b|]).
rewrite (spec_add_mul_div b w_0); auto with zarith.
rewrite spec_0;rewrite Zdiv_0_l; try omega.
rewrite Zplus_0_r; rewrite Zmult_comm.
rewrite Zmod_small; auto with zarith.
assert (H5 := spec_to_Z (high n a)).
assert
([|w_add_mul_div (w_head0 b) w_0 (high n a)|]
<[|w_add_mul_div (w_head0 b) b w_0|]).
rewrite H4.
rewrite spec_add_mul_div;auto with zarith.
rewrite spec_0;rewrite Zmult_0_l;rewrite Zplus_0_l.
assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB).
apply Zdiv_lt_upper_bound;auto with zarith.
apply Zlt_le_trans with wB;auto with zarith.
pattern wB at 1;replace wB with (wB*1);try ring.
apply Zmult_le_compat;auto with zarith.
assert (H6 := Zpower_gt_0 2 (Zpos w_digits - [|w_head0 b|]));
auto with zarith.
rewrite Zmod_small;auto with zarith.
apply Zdiv_lt_upper_bound;auto with zarith.
apply Zlt_le_trans with wB;auto with zarith.
apply Zle_trans with (2 ^ [|w_head0 b|] * [|b|] * 2).
rewrite <- wB_div_2; try omega.
apply Zmult_le_compat;auto with zarith.
pattern 2 at 1;rewrite <- Zpower_1_r.
apply Zpower_le_monotone;split;auto with zarith.
rewrite <- H4 in H0.
assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith.
assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6).
destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
(w_add_mul_div (w_head0 b) w_0 (high n a)) a
(double_0 w_0 n)) as (q,r).
assert (U:= spec_double_digits n).
rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7.
rewrite Zplus_0_r in H7.
rewrite spec_add_mul_div in H7;auto with zarith.
rewrite spec_0 in H7;rewrite Zmult_0_l in H7;rewrite Zplus_0_l in H7.
assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB
= [!n|a!] / 2^(Zpos (double_digits w_digits n) - [|w_head0 b|])).
rewrite Zmod_small;auto with zarith.
rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith.
rewrite <- Zpower_exp;auto with zarith.
replace (Zpos (double_digits w_digits n) - Zpos w_digits +
(Zpos w_digits - [|w_head0 b|]))
with (Zpos (double_digits w_digits n) - [|w_head0 b|]);trivial;ring.
assert (H8 := Zpower_gt_0 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith.
split;auto with zarith.
apply Zle_lt_trans with ([|high n a|]);auto with zarith.
apply Zdiv_le_upper_bound;auto with zarith.
pattern ([|high n a|]) at 1;rewrite <- Zmult_1_r.
apply Zmult_le_compat;auto with zarith.
rewrite H8 in H7;unfold double_wB,base in H7.
rewrite <- shift_unshift_mod in H7;auto with zarith.
rewrite H4 in H7.
assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|]
= [|r|]/2^[|w_head0 b|]).
rewrite spec_add_mul_div.
rewrite spec_0;rewrite Zmult_0_l;rewrite Zplus_0_l.
replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|])
with ([|w_head0 b|]).
rewrite Zmod_small;auto with zarith.
assert (H9 := spec_to_Z r).
split;auto with zarith.
apply Zle_lt_trans with ([|r|]);auto with zarith.
apply Zdiv_le_upper_bound;auto with zarith.
pattern ([|r|]) at 1;rewrite <- Zmult_1_r.
apply Zmult_le_compat;auto with zarith.
assert (H10 := Zpower_gt_0 2 ([|w_head0 b|]));auto with zarith.
rewrite spec_sub.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
case (spec_to_Z w_zdigits); auto with zarith.
rewrite spec_sub.
rewrite Zmod_small; auto with zarith.
split; auto with zarith.
case (spec_to_Z w_zdigits); auto with zarith.
case H7; intros H71 H72.
split.
rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith.
rewrite H71;rewrite H9.
replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|]))
with ([!n|q!] *[|b|] * 2^[|w_head0 b|]);
try (ring;fail).
rewrite Z_div_plus_l;auto with zarith.
assert (H10 := spec_to_Z
(w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split;
auto with zarith.
rewrite H9.
apply Zdiv_lt_upper_bound;auto with zarith.
rewrite Zmult_comm;auto with zarith.
exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a).
Qed.
Definition double_modn1 (n:nat) (a:word w n) (b:w) :=
let p := w_head0 b in
match w_compare p w_0 with
| Gt =>
let b2p := w_add_mul_div p b w_0 in
let ha := high n a in
let k := w_sub w_zdigits p in
let lsr_n := w_add_mul_div k w_0 in
let r0 := w_add_mul_div p w_0 ha in
let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in
lsr_n r
| _ => double_modn1_0 b n w_0 a
end.
Lemma spec_double_modn1_aux : forall n a b,
double_modn1 n a b = snd (double_divn1 n a b).
Proof.
intros n a b;unfold double_divn1,double_modn1.
generalize (spec_compare (w_head0 b) w_0); case w_compare;
rewrite spec_0; intros H2; auto with zarith.
apply spec_double_modn1_0.
apply spec_double_modn1_0.
rewrite spec_double_modn1_p.
destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
(w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial.
Qed.
Lemma spec_double_modn1 : forall n a b, 0 < [|b|] ->
[|double_modn1 n a b|] = [!n|a!] mod [|b|].
Proof.
intros n a b H;assert (H1 := spec_double_divn1 n a H).
assert (H2 := spec_double_modn1_aux n a b).
rewrite H2;destruct (double_divn1 n a b) as (q,r).
simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith.
destruct H1 as (h1,h2);rewrite h1;ring.
Qed.
End GENDIVN1.
|