summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
blob: 29186694fd303264d6bb549897bceb72e997e6cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(* $Id: CyclicAxioms.v 13323 2010-07-24 15:57:30Z herbelin $ *)

(** * Signature and specification of a bounded integer structure *)

(** This file specifies how to represent [Z/nZ] when [n=2^d],
    [d] being the number of digits of these bounded integers. *)

Set Implicit Arguments.

Require Import ZArith.
Require Import Znumtheory.
Require Import BigNumPrelude.
Require Import DoubleType.

Local Open Scope Z_scope.

(** First, a description via an operator record and a spec record. *)

Section Z_nZ_Op.

 Variable znz : Type.

 Record znz_op := mk_znz_op {

    (* Conversion functions with Z *)
    znz_digits : positive;
    znz_zdigits: znz;
    znz_to_Z   : znz -> Z;
    znz_of_pos : positive -> N * znz; (* Euclidean division by [2^digits] *)
    znz_head0  : znz -> znz; (* number of digits 0 in front of the number *)
    znz_tail0  : znz -> znz; (* number of digits 0 at the bottom of the number *)

    (* Basic numbers *)
    znz_0   : znz;
    znz_1   : znz;
    znz_Bm1 : znz;  (* [2^digits-1], which is equivalent to [-1] *)

    (* Comparison *)
    znz_compare     : znz -> znz -> comparison;
    znz_eq0         : znz -> bool;

    (* Basic arithmetic operations *)
    znz_opp_c       : znz -> carry znz;
    znz_opp         : znz -> znz;
    znz_opp_carry   : znz -> znz; (* the carry is known to be -1 *)

    znz_succ_c      : znz -> carry znz;
    znz_add_c       : znz -> znz -> carry znz;
    znz_add_carry_c : znz -> znz -> carry znz;
    znz_succ        : znz -> znz;
    znz_add         : znz -> znz -> znz;
    znz_add_carry   : znz -> znz -> znz;

    znz_pred_c      : znz -> carry znz;
    znz_sub_c       : znz -> znz -> carry znz;
    znz_sub_carry_c : znz -> znz -> carry znz;
    znz_pred        : znz -> znz;
    znz_sub         : znz -> znz -> znz;
    znz_sub_carry   : znz -> znz -> znz;

    znz_mul_c       : znz -> znz -> zn2z znz;
    znz_mul         : znz -> znz -> znz;
    znz_square_c    : znz -> zn2z znz;

    (* Special divisions operations *)
    znz_div21       : znz -> znz -> znz -> znz*znz;
    znz_div_gt      : znz -> znz -> znz * znz; (* specialized version of [znz_div] *)
    znz_div         : znz -> znz -> znz * znz;

    znz_mod_gt      : znz -> znz -> znz; (* specialized version of [znz_mod] *)
    znz_mod         : znz -> znz -> znz;

    znz_gcd_gt      : znz -> znz -> znz; (* specialized version of [znz_gcd] *)
    znz_gcd         : znz -> znz -> znz;
    (* [znz_add_mul_div p i j] is a combination of the [(digits-p)]
       low bits of [i] above the [p] high bits of [j]:
       [znz_add_mul_div p i j = i*2^p+j/2^(digits-p)] *)
    znz_add_mul_div : znz -> znz -> znz -> znz;
    (* [znz_pos_mod p i] is [i mod 2^p] *)
    znz_pos_mod     : znz -> znz -> znz;

    znz_is_even     : znz -> bool;
    (* square root *)
    znz_sqrt2       : znz -> znz -> znz * carry znz;
    znz_sqrt        : znz -> znz  }.

End Z_nZ_Op.

Section Z_nZ_Spec.
 Variable w : Type.
 Variable w_op : znz_op w.

 Let w_digits      := w_op.(znz_digits).
 Let w_zdigits     := w_op.(znz_zdigits).
 Let w_to_Z        := w_op.(znz_to_Z).
 Let w_of_pos      := w_op.(znz_of_pos).
 Let w_head0       := w_op.(znz_head0).
 Let w_tail0       := w_op.(znz_tail0).

 Let w0            := w_op.(znz_0).
 Let w1            := w_op.(znz_1).
 Let wBm1          := w_op.(znz_Bm1).

 Let w_compare     := w_op.(znz_compare).
 Let w_eq0         := w_op.(znz_eq0).

 Let w_opp_c       := w_op.(znz_opp_c).
 Let w_opp         := w_op.(znz_opp).
 Let w_opp_carry   := w_op.(znz_opp_carry).

 Let w_succ_c      := w_op.(znz_succ_c).
 Let w_add_c       := w_op.(znz_add_c).
 Let w_add_carry_c := w_op.(znz_add_carry_c).
 Let w_succ        := w_op.(znz_succ).
 Let w_add         := w_op.(znz_add).
 Let w_add_carry   := w_op.(znz_add_carry).

 Let w_pred_c      := w_op.(znz_pred_c).
 Let w_sub_c       := w_op.(znz_sub_c).
 Let w_sub_carry_c := w_op.(znz_sub_carry_c).
 Let w_pred        := w_op.(znz_pred).
 Let w_sub         := w_op.(znz_sub).
 Let w_sub_carry   := w_op.(znz_sub_carry).

 Let w_mul_c       := w_op.(znz_mul_c).
 Let w_mul         := w_op.(znz_mul).
 Let w_square_c    := w_op.(znz_square_c).

 Let w_div21       := w_op.(znz_div21).
 Let w_div_gt      := w_op.(znz_div_gt).
 Let w_div         := w_op.(znz_div).

 Let w_mod_gt      := w_op.(znz_mod_gt).
 Let w_mod         := w_op.(znz_mod).

 Let w_gcd_gt      := w_op.(znz_gcd_gt).
 Let w_gcd         := w_op.(znz_gcd).

 Let w_add_mul_div := w_op.(znz_add_mul_div).

 Let w_pos_mod     := w_op.(znz_pos_mod).

 Let w_is_even     := w_op.(znz_is_even).
 Let w_sqrt2       := w_op.(znz_sqrt2).
 Let w_sqrt        := w_op.(znz_sqrt).

 Notation "[| x |]" := (w_to_Z x)  (at level 0, x at level 99).

 Let wB := base w_digits.

 Notation "[+| c |]" :=
   (interp_carry 1 wB w_to_Z c)  (at level 0, x at level 99).

 Notation "[-| c |]" :=
   (interp_carry (-1) wB w_to_Z c)  (at level 0, x at level 99).

 Notation "[|| x ||]" :=
   (zn2z_to_Z wB w_to_Z x)  (at level 0, x at level 99).

 Record znz_spec := mk_znz_spec {

    (* Conversion functions with Z *)
    spec_to_Z   : forall x, 0 <= [| x |] < wB;
    spec_of_pos : forall p,
           Zpos p = (Z_of_N (fst (w_of_pos p)))*wB + [|(snd (w_of_pos p))|];
    spec_zdigits : [| w_zdigits |] = Zpos w_digits;
    spec_more_than_1_digit: 1 < Zpos w_digits;

    (* Basic numbers *)
    spec_0   : [|w0|] = 0;
    spec_1   : [|w1|] = 1;
    spec_Bm1 : [|wBm1|] = wB - 1;

    (* Comparison *)
    spec_compare :
     forall x y,
       match w_compare x y with
       | Eq => [|x|] = [|y|]
       | Lt => [|x|] < [|y|]
       | Gt => [|x|] > [|y|]
       end;
    spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0;
    (* Basic arithmetic operations *)
    spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|];
    spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB;
    spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1;

    spec_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1;
    spec_add_c  : forall x y, [+|w_add_c x y|] = [|x|] + [|y|];
    spec_add_carry_c : forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1;
    spec_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB;
    spec_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB;
    spec_add_carry :
	 forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB;

    spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1;
    spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|];
    spec_sub_carry_c : forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1;
    spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB;
    spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB;
    spec_sub_carry :
	 forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB;

    spec_mul_c : forall x y, [|| w_mul_c x y ||] = [|x|] * [|y|];
    spec_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB;
    spec_square_c : forall x, [|| w_square_c x||] = [|x|] * [|x|];

    (* Special divisions operations *)
    spec_div21 : forall a1 a2 b,
      wB/2 <= [|b|] ->
      [|a1|] < [|b|] ->
      let (q,r) := w_div21 a1 a2 b in
      [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
      0 <= [|r|] < [|b|];
    spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
      let (q,r) := w_div_gt a b in
      [|a|] = [|q|] * [|b|] + [|r|] /\
      0 <= [|r|] < [|b|];
    spec_div : forall a b, 0 < [|b|] ->
      let (q,r) := w_div a b in
      [|a|] = [|q|] * [|b|] + [|r|] /\
      0 <= [|r|] < [|b|];

    spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
      [|w_mod_gt a b|] = [|a|] mod [|b|];
    spec_mod :  forall a b, 0 < [|b|] ->
      [|w_mod a b|] = [|a|] mod [|b|];

    spec_gcd_gt : forall a b, [|a|] > [|b|] ->
      Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|];
    spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|w_gcd a b|];


    (* shift operations *)
    spec_head00:  forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits;
    spec_head0  : forall x,  0 < [|x|] ->
	 wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB;
    spec_tail00:  forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits;
    spec_tail0  : forall x, 0 < [|x|] ->
         exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|w_tail0 x|]) ;
    spec_add_mul_div : forall x y p,
       [|p|] <= Zpos w_digits ->
       [| w_add_mul_div p x y |] =
         ([|x|] * (2 ^ [|p|]) +
          [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB;
    spec_pos_mod : forall w p,
       [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]);
    (* sqrt *)
    spec_is_even : forall x,
      if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1;
    spec_sqrt2 : forall x y,
       wB/ 4 <= [|x|] ->
       let (s,r) := w_sqrt2 x y in
          [||WW x y||] = [|s|] ^ 2 + [+|r|] /\
          [+|r|] <= 2 * [|s|];
    spec_sqrt : forall x,
       [|w_sqrt x|] ^ 2 <= [|x|] < ([|w_sqrt x|] + 1) ^ 2
  }.

End Z_nZ_Spec.

(** Generic construction of double words *)

Section WW.

 Variable w : Type.
 Variable w_op : znz_op w.
 Variable op_spec : znz_spec w_op.

 Let wB := base w_op.(znz_digits).
 Let w_to_Z := w_op.(znz_to_Z).
 Let w_eq0 := w_op.(znz_eq0).
 Let w_0 := w_op.(znz_0).

 Definition znz_W0 h :=
  if w_eq0 h then W0 else WW h w_0.

 Definition znz_0W l :=
  if w_eq0 l then W0 else WW w_0 l.

 Definition znz_WW h l :=
  if w_eq0 h then znz_0W l else WW h l.

 Lemma spec_W0 : forall h,
   zn2z_to_Z wB w_to_Z (znz_W0 h) = (w_to_Z h)*wB.
 Proof.
 unfold zn2z_to_Z, znz_W0, w_to_Z; simpl; intros.
 case_eq (w_eq0 h); intros.
 rewrite (op_spec.(spec_eq0) _ H); auto.
 unfold w_0; rewrite op_spec.(spec_0); auto with zarith.
 Qed.

 Lemma spec_0W : forall l,
   zn2z_to_Z wB w_to_Z (znz_0W l) = w_to_Z l.
 Proof.
 unfold zn2z_to_Z, znz_0W, w_to_Z; simpl; intros.
 case_eq (w_eq0 l); intros.
 rewrite (op_spec.(spec_eq0) _ H); auto.
 unfold w_0; rewrite op_spec.(spec_0); auto with zarith.
 Qed.

 Lemma spec_WW : forall h l,
  zn2z_to_Z wB w_to_Z (znz_WW h l) = (w_to_Z h)*wB + w_to_Z l.
 Proof.
 unfold znz_WW, w_to_Z; simpl; intros.
 case_eq (w_eq0 h); intros.
 rewrite (op_spec.(spec_eq0) _ H); auto.
 rewrite spec_0W; auto.
 simpl; auto.
 Qed.

End WW.

(** Injecting [Z] numbers into a cyclic structure *)

Section znz_of_pos.

 Variable w : Type.
 Variable w_op : znz_op w.
 Variable op_spec : znz_spec w_op.

 Notation "[| x |]" := (znz_to_Z w_op x)  (at level 0, x at level 99).

 Definition znz_of_Z (w:Type) (op:znz_op w) z :=
 match z with
 | Zpos p => snd (op.(znz_of_pos) p)
 | _ => op.(znz_0)
 end.

 Theorem znz_of_pos_correct:
   forall p, Zpos p < base (znz_digits w_op) -> [|(snd (znz_of_pos w_op p))|] = Zpos p.
 intros p Hp.
 generalize (spec_of_pos op_spec p).
 case (znz_of_pos w_op p); intros n w1; simpl.
 case n; simpl Npos; auto with zarith.
 intros p1 Hp1; contradict Hp; apply Zle_not_lt.
 rewrite Hp1; auto with zarith.
 match goal with |- _ <= ?X + ?Y =>
  apply Zle_trans with X; auto with zarith
 end.
 match goal with |- ?X <= _ =>
  pattern X at 1; rewrite <- (Zmult_1_l);
  apply Zmult_le_compat_r; auto with zarith
 end.
 case p1; simpl; intros; red; simpl; intros; discriminate.
 unfold base; auto with zarith.
 case (spec_to_Z op_spec w1); auto with zarith.
 Qed.

 Theorem znz_of_Z_correct:
   forall p, 0 <= p < base (znz_digits w_op) -> [|znz_of_Z w_op p|] = p.
 intros p; case p; simpl; try rewrite spec_0; auto.
 intros; rewrite znz_of_pos_correct; auto with zarith.
 intros p1 (H1, _); contradict H1; apply Zlt_not_le; red; simpl; auto.
 Qed.
End znz_of_pos.


(** A modular specification grouping the earlier records. *)

Module Type CyclicType.
 Parameter w : Type.
 Parameter w_op : znz_op w.
 Parameter w_spec : znz_spec w_op.
End CyclicType.


(** A Cyclic structure can be seen as a ring *)

Module CyclicRing (Import Cyclic : CyclicType).

Definition t := w.

Local Notation "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).

Definition eq (n m : t) := [| n |] = [| m |].
Definition zero : t := w_op.(znz_0).
Definition one := w_op.(znz_1).
Definition add := w_op.(znz_add).
Definition sub := w_op.(znz_sub).
Definition mul := w_op.(znz_mul).
Definition opp := w_op.(znz_opp).

Local Infix "=="  := eq (at level 70).
Local Notation "0" := zero.
Local Notation "1" := one.
Local Infix "+" := add.
Local Infix "-" := sub.
Local Infix "*" := mul.
Local Notation "!!" := (base (znz_digits w_op)).

Hint Rewrite
 w_spec.(spec_0) w_spec.(spec_1)
 w_spec.(spec_add) w_spec.(spec_mul) w_spec.(spec_opp) w_spec.(spec_sub)
 : cyclic.

Ltac zify :=
 unfold eq, zero, one, add, sub, mul, opp in *; autorewrite with cyclic.

Lemma add_0_l : forall x, 0 + x == x.
Proof.
intros. zify. rewrite Zplus_0_l.
apply Zmod_small. apply w_spec.(spec_to_Z).
Qed.

Lemma add_comm : forall x y, x + y == y + x.
Proof.
intros. zify. now rewrite Zplus_comm.
Qed.

Lemma add_assoc : forall x y z, x + (y + z) == x + y + z.
Proof.
intros. zify. now rewrite Zplus_mod_idemp_r, Zplus_mod_idemp_l, Zplus_assoc.
Qed.

Lemma mul_1_l : forall x, 1 * x == x.
Proof.
intros. zify. rewrite Zmult_1_l.
apply Zmod_small. apply w_spec.(spec_to_Z).
Qed.

Lemma mul_comm : forall x y, x * y == y * x.
Proof.
intros. zify. now rewrite Zmult_comm.
Qed.

Lemma mul_assoc : forall x y z, x * (y * z) == x * y * z.
Proof.
intros. zify. now rewrite Zmult_mod_idemp_r, Zmult_mod_idemp_l, Zmult_assoc.
Qed.

Lemma mul_add_distr_r : forall x y z, (x+y)*z == x*z + y*z.
Proof.
intros. zify. now rewrite <- Zplus_mod, Zmult_mod_idemp_l, Zmult_plus_distr_l.
Qed.

Lemma add_opp_r : forall x y, x + opp y == x-y.
Proof.
intros. zify. rewrite <- Zminus_mod_idemp_r. unfold Zminus.
destruct (Z_eq_dec ([|y|] mod !!) 0) as [EQ|NEQ].
rewrite Z_mod_zero_opp_full, EQ, 2 Zplus_0_r; auto.
rewrite Z_mod_nz_opp_full by auto.
rewrite <- Zplus_mod_idemp_r, <- Zminus_mod_idemp_l.
rewrite Z_mod_same_full. simpl. now rewrite Zplus_mod_idemp_r.
Qed.

Lemma add_opp_diag_r : forall x, x + opp x == 0.
Proof.
intros. red. rewrite add_opp_r. zify. now rewrite Zminus_diag, Zmod_0_l.
Qed.

Lemma CyclicRing : ring_theory 0 1 add mul sub opp eq.
Proof.
constructor.
exact add_0_l. exact add_comm. exact add_assoc.
exact mul_1_l. exact mul_comm. exact mul_assoc.
exact mul_add_distr_r.
symmetry. apply add_opp_r.
exact add_opp_diag_r.
Qed.

Definition eqb x y :=
 match w_op.(znz_compare) x y with Eq => true | _ => false end.

Lemma eqb_eq : forall x y, eqb x y = true <-> x == y.
Proof.
 intros. unfold eqb, eq. generalize (w_spec.(spec_compare) x y).
 destruct (w_op.(znz_compare) x y); intuition; try discriminate.
Qed.

Lemma eqb_correct : forall x y, eqb x y = true -> x==y.
Proof. now apply eqb_eq. Qed.

End CyclicRing.