summaryrefslogtreecommitdiff
path: root/theories/MSets/MSetList.v
blob: 05c20eb8fa55000e8b37e1e5469d2986aaed8691 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(** * Finite sets library *)

(** This file proposes an implementation of the non-dependent
    interface [MSetInterface.S] using strictly ordered list. *)

Require Export MSetInterface OrdersFacts OrdersLists.
Set Implicit Arguments.
Unset Strict Implicit.

(** * Functions over lists

   First, we provide sets as lists which are not necessarily sorted.
   The specs are proved under the additional condition of being sorted.
   And the functions returning sets are proved to preserve this invariant. *)

Module Ops (X:OrderedType) <: WOps X.

  Definition elt := X.t.
  Definition t := list elt.

  Definition empty : t := nil.

  Definition is_empty (l : t) := if l then true else false.

  (** ** The set operations. *)

  Fixpoint mem x s :=
    match s with
    | nil => false
    | y :: l =>
        match X.compare x y with
        | Lt => false
        | Eq => true
        | Gt => mem x l
        end
    end.

  Fixpoint add x s :=
    match s with
    | nil => x :: nil
    | y :: l =>
        match X.compare x y with
        | Lt => x :: s
        | Eq => s
        | Gt => y :: add x l
        end
    end.

  Definition singleton (x : elt) := x :: nil.

  Fixpoint remove x s : t :=
    match s with
    | nil => nil
    | y :: l =>
        match X.compare x y with
        | Lt => s
        | Eq => l
        | Gt => y :: remove x l
        end
    end.

  Fixpoint union (s : t) : t -> t :=
    match s with
    | nil => fun s' => s'
    | x :: l =>
        (fix union_aux (s' : t) : t :=
           match s' with
           | nil => s
           | x' :: l' =>
               match X.compare x x' with
               | Lt => x :: union l s'
               | Eq => x :: union l l'
               | Gt => x' :: union_aux l'
               end
           end)
    end.

  Fixpoint inter (s : t) : t -> t :=
    match s with
    | nil => fun _ => nil
    | x :: l =>
        (fix inter_aux (s' : t) : t :=
           match s' with
           | nil => nil
           | x' :: l' =>
               match X.compare x x' with
               | Lt => inter l s'
               | Eq => x :: inter l l'
               | Gt => inter_aux l'
               end
           end)
    end.

  Fixpoint diff (s : t) : t -> t :=
    match s with
    | nil => fun _ => nil
    | x :: l =>
        (fix diff_aux (s' : t) : t :=
           match s' with
           | nil => s
           | x' :: l' =>
               match X.compare x x' with
               | Lt => x :: diff l s'
               | Eq => diff l l'
               | Gt => diff_aux l'
               end
           end)
    end.

  Fixpoint equal (s : t) : t -> bool :=
    fun s' : t =>
    match s, s' with
    | nil, nil => true
    | x :: l, x' :: l' =>
        match X.compare x x' with
        | Eq => equal l l'
        | _ => false
        end
    | _, _ => false
    end.

  Fixpoint subset s s' :=
    match s, s' with
    | nil, _ => true
    | x :: l, x' :: l' =>
        match X.compare x x' with
        | Lt => false
        | Eq => subset l l'
        | Gt => subset s l'
        end
    | _, _ => false
    end.

  Definition fold (B : Type) (f : elt -> B -> B) (s : t) (i : B) : B :=
    fold_left (flip f) s i.

  Fixpoint filter (f : elt -> bool) (s : t) : t :=
    match s with
    | nil => nil
    | x :: l => if f x then x :: filter f l else filter f l
    end.

  Fixpoint for_all (f : elt -> bool) (s : t) : bool :=
    match s with
    | nil => true
    | x :: l => if f x then for_all f l else false
    end.

  Fixpoint exists_ (f : elt -> bool) (s : t) : bool :=
    match s with
    | nil => false
    | x :: l => if f x then true else exists_ f l
    end.

  Fixpoint partition (f : elt -> bool) (s : t) : t * t :=
    match s with
    | nil => (nil, nil)
    | x :: l =>
        let (s1, s2) := partition f l in
        if f x then (x :: s1, s2) else (s1, x :: s2)
    end.

  Definition cardinal (s : t) : nat := length s.

  Definition elements (x : t) : list elt := x.

  Definition min_elt (s : t) : option elt :=
    match s with
    | nil => None
    | x :: _ => Some x
    end.

  Fixpoint max_elt (s : t) : option elt :=
    match s with
    | nil => None
    | x :: nil => Some x
    | _ :: l => max_elt l
    end.

  Definition choose := min_elt.

  Fixpoint compare s s' :=
   match s, s' with
    | nil, nil => Eq
    | nil, _ => Lt
    | _, nil => Gt
    | x::s, x'::s' =>
      match X.compare x x' with
       | Eq => compare s s'
       | Lt => Lt
       | Gt => Gt
      end
   end.

End Ops.

Module MakeRaw (X: OrderedType) <: RawSets X.
  Module Import MX := OrderedTypeFacts X.
  Module Import ML := OrderedTypeLists X.

  Include Ops X.

  (** ** Proofs of set operation specifications. *)

  Section ForNotations.

  Definition inf x l :=
   match l with
   | nil => true
   | y::_ => match X.compare x y with Lt => true | _ => false end
   end.

  Fixpoint isok l :=
   match l with
   | nil => true
   | x::l => inf x l && isok l
   end.

  Notation Sort l := (isok l = true).
  Notation Inf := (lelistA X.lt).
  Notation In := (InA X.eq).

  Existing Instance X.eq_equiv.
  Hint Extern 20 => solve [order].

  Definition IsOk s := Sort s.

  Class Ok (s:t) : Prop := ok : Sort s.

  Hint Resolve ok.
  Hint Unfold Ok.

  Instance Sort_Ok s `(Hs : Sort s) : Ok s := { ok := Hs }.

  Lemma inf_iff : forall x l, Inf x l <-> inf x l = true.
  Proof.
    intros x l; split; intro H.
    (* -> *)
    destruct H; simpl in *.
      reflexivity.
    rewrite <- compare_lt_iff in H; rewrite H; reflexivity.
    (* <- *)
    destruct l as [|y ys]; simpl in *.
      constructor; fail.
    revert H; case_eq (X.compare x y); try discriminate; [].
    intros Ha _.
    rewrite compare_lt_iff in Ha.
    constructor; assumption.
  Qed.

  Lemma isok_iff : forall l, sort X.lt l <-> Ok l.
  Proof.
    intro l; split; intro H.
    (* -> *)
    elim H.
      constructor; fail.
    intros y ys Ha Hb Hc.
    change (inf y ys && isok ys = true).
    rewrite inf_iff in Hc.
    rewrite andb_true_iff; tauto.
    (* <- *)
    induction l as [|x xs].
      constructor.
    change (inf x xs && isok xs = true) in H.
    rewrite andb_true_iff, <- inf_iff in H.
    destruct H; constructor; tauto.
  Qed.

  Hint Extern 1 (Ok _) => rewrite <- isok_iff.

  Ltac inv_ok := match goal with
   | H:sort X.lt (_ :: _) |- _ => inversion_clear H; inv_ok
   | H:sort X.lt nil |- _ => clear H; inv_ok
   | H:sort X.lt ?l |- _ => change (Ok l) in H; inv_ok
   | H:Ok _ |- _ => rewrite <- isok_iff in H; inv_ok
   | |- Ok _ => rewrite <- isok_iff
   | _ => idtac
  end.

  Ltac inv := invlist InA; inv_ok; invlist lelistA.
  Ltac constructors := repeat constructor.

  Ltac sort_inf_in := match goal with
   | H:Inf ?x ?l, H':In ?y ?l |- _ =>
     cut (X.lt x y); [ intro | apply Sort_Inf_In with l; auto]
   | _ => fail
  end.

  Global Instance isok_Ok s `(isok s = true) : Ok s | 10.
  Proof.
  intros. assumption.
  Qed.

  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) (s : t) := exists x, In x s /\ P x.

  Lemma mem_spec :
   forall (s : t) (x : elt) (Hs : Ok s), mem x s = true <-> In x s.
  Proof.
  induction s; intros x Hs; inv; simpl.
  intuition. discriminate. inv.
  elim_compare x a; rewrite InA_cons; intuition; try order.
  discriminate.
  sort_inf_in. order.
  rewrite <- IHs; auto.
  rewrite IHs; auto.
  Qed.

  Lemma add_inf :
   forall (s : t) (x a : elt), Inf a s -> X.lt a x -> Inf a (add x s).
  Proof.
  simple induction s; simpl.
  intuition.
  intros; elim_compare x a; inv; intuition.
  Qed.
  Hint Resolve add_inf.

  Global Instance add_ok s x : forall `(Ok s), Ok (add x s).
  Proof.
  repeat rewrite <- isok_iff; revert s x.
  simple induction s; simpl.
  intuition.
  intros; elim_compare x a; inv; auto.
  Qed.

  Lemma add_spec :
   forall (s : t) (x y : elt) (Hs : Ok s),
    In y (add x s) <-> X.eq y x \/ In y s.
  Proof.
  induction s; simpl; intros.
  intuition. inv; auto.
  elim_compare x a; inv; rewrite !InA_cons, ?IHs; intuition.
  Qed.

  Lemma remove_inf :
   forall (s : t) (x a : elt) (Hs : Ok s), Inf a s -> Inf a (remove x s).
  Proof.
  induction s; simpl.
  intuition.
  intros; elim_compare x a; inv; auto.
  apply Inf_lt with a; auto.
  Qed.
  Hint Resolve remove_inf.

  Global Instance remove_ok s x : forall `(Ok s), Ok (remove x s).
  Proof.
  repeat rewrite <- isok_iff; revert s x.
  induction s; simpl.
  intuition.
  intros; elim_compare x a; inv; auto.
  Qed.

  Lemma remove_spec :
   forall (s : t) (x y : elt) (Hs : Ok s),
    In y (remove x s) <-> In y s /\ ~X.eq y x.
  Proof.
  induction s; simpl; intros.
  intuition; inv; auto.
  elim_compare x a; inv; rewrite !InA_cons, ?IHs; intuition;
   try sort_inf_in; try order.
  Qed.

  Global Instance singleton_ok x : Ok (singleton x).
  Proof.
  unfold singleton; simpl; auto.
  Qed.

  Lemma singleton_spec : forall x y : elt, In y (singleton x) <-> X.eq y x.
  Proof.
  unfold singleton; simpl; split; intros; inv; auto.
  Qed.

  Ltac induction2 :=
    simple induction s;
     [ simpl; auto; try solve [ intros; inv ]
     | intros x l Hrec; simple induction s';
        [ simpl; auto; try solve [ intros; inv ]
        | intros x' l' Hrec'; simpl; elim_compare x x'; intros; inv; auto ]].

  Lemma union_inf :
   forall (s s' : t) (a : elt) (Hs : Ok s) (Hs' : Ok s'),
   Inf a s -> Inf a s' -> Inf a (union s s').
  Proof.
  induction2.
  Qed.
  Hint Resolve union_inf.

  Global Instance union_ok s s' : forall `(Ok s, Ok s'), Ok (union s s').
  Proof.
  repeat rewrite <- isok_iff; revert s s'.
  induction2; constructors; try apply @ok; auto. 
  apply Inf_eq with x'; auto; apply union_inf; auto; apply Inf_eq with x; auto; order.
  change (Inf x' (union (x :: l) l')); auto.
  Qed.

  Lemma union_spec :
   forall (s s' : t) (x : elt) (Hs : Ok s) (Hs' : Ok s'),
   In x (union s s') <-> In x s \/ In x s'.
  Proof.
  induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto.
  Qed.

  Lemma inter_inf :
   forall (s s' : t) (a : elt) (Hs : Ok s) (Hs' : Ok s'),
   Inf a s -> Inf a s' -> Inf a (inter s s').
  Proof.
  induction2.
  apply Inf_lt with x; auto.
  apply Hrec'; auto.
  apply Inf_lt with x'; auto.
  Qed.
  Hint Resolve inter_inf.

  Global Instance inter_ok s s' : forall `(Ok s, Ok s'), Ok (inter s s').
  Proof.
  repeat rewrite <- isok_iff; revert s s'.
  induction2.
  constructors; auto.
  apply Inf_eq with x'; auto; apply inter_inf; auto; apply Inf_eq with x; auto.
  Qed.

  Lemma inter_spec :
   forall (s s' : t) (x : elt) (Hs : Ok s) (Hs' : Ok s'),
   In x (inter s s') <-> In x s /\ In x s'.
  Proof.
  induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto;
   try sort_inf_in; try order.
  Qed.

  Lemma diff_inf :
   forall (s s' : t) (Hs : Ok s) (Hs' : Ok s') (a : elt),
   Inf a s -> Inf a s' -> Inf a (diff s s').
  Proof.
  intros s s'; repeat rewrite <- isok_iff; revert s s'.
  induction2.
  apply Hrec; trivial.
  apply Inf_lt with x; auto.
  apply Inf_lt with x'; auto.
  apply Hrec'; auto.
  apply Inf_lt with x'; auto.
  Qed.
  Hint Resolve diff_inf.

  Global Instance diff_ok s s' : forall `(Ok s, Ok s'), Ok (diff s s').
  Proof.
  repeat rewrite <- isok_iff; revert s s'.
  induction2.
  Qed.

  Lemma diff_spec :
   forall (s s' : t) (x : elt) (Hs : Ok s) (Hs' : Ok s'),
   In x (diff s s') <-> In x s /\ ~In x s'.
  Proof.
  induction2; try rewrite ?InA_cons, ?Hrec, ?Hrec'; intuition; inv; auto;
   try sort_inf_in; try order.
  right; intuition; inv; auto.
  Qed.

  Lemma equal_spec :
   forall (s s' : t) (Hs : Ok s) (Hs' : Ok s'),
   equal s s' = true <-> Equal s s'.
  Proof.
  induction s as [ | x s IH]; intros [ | x' s'] Hs Hs'; simpl.
  intuition reflexivity. 
  split; intros H. discriminate. assert (In x' nil) by (rewrite H; auto). inv.
  split; intros H. discriminate. assert (In x nil) by (rewrite <-H; auto). inv.
  inv.
  elim_compare x x' as C; try discriminate.
  (* x=x' *)
  rewrite IH; auto.
  split; intros E y; specialize (E y).
  rewrite !InA_cons, E, C; intuition.
  rewrite !InA_cons, C in E. intuition; try sort_inf_in; order.
  (* x<x' *)
  split; intros E. discriminate.
  assert (In x (x'::s')) by (rewrite <- E; auto).
  inv; try sort_inf_in; order.
  (* x>x' *)
  split; intros E. discriminate.
  assert (In x' (x::s)) by (rewrite E; auto).
  inv; try sort_inf_in; order.
  Qed.

  Lemma subset_spec :
   forall (s s' : t) (Hs : Ok s) (Hs' : Ok s'),
   subset s s' = true <-> Subset s s'.
  Proof.
  intros s s'; revert s.
  induction s' as [ | x' s' IH]; intros [ | x s] Hs Hs'; simpl; auto.
  split; try red; intros; auto.
  split; intros H. discriminate. assert (In x nil) by (apply H; auto). inv.
  split; try red; intros; auto. inv.
  inv. elim_compare x x' as C.
  (* x=x' *)
  rewrite IH; auto.
  split; intros S y; specialize (S y).
  rewrite !InA_cons, C. intuition.
  rewrite !InA_cons, C in S. intuition; try sort_inf_in; order.
  (* x<x' *)
  split; intros S. discriminate.
  assert (In x (x'::s')) by (apply S; auto).
  inv; try sort_inf_in; order.
  (* x>x' *)
  rewrite IH; auto.
  split; intros S y; specialize (S y).
  rewrite !InA_cons. intuition.
  rewrite !InA_cons in S. rewrite !InA_cons. intuition; try sort_inf_in; order.
  Qed.

  Global Instance empty_ok : Ok empty.
  Proof.
  constructors.
  Qed.

  Lemma empty_spec : Empty empty.
  Proof.
  unfold Empty, empty; intuition; inv.
  Qed.

  Lemma is_empty_spec : forall s : t, is_empty s = true <-> Empty s.
  Proof.
  intros [ | x s]; simpl.
  split; auto. intros _ x H. inv.
  split. discriminate. intros H. elim (H x); auto.
  Qed.

  Lemma elements_spec1 : forall (s : t) (x : elt), In x (elements s) <-> In x s.
  Proof.
  intuition.
  Qed.

  Lemma elements_spec2 : forall (s : t) (Hs : Ok s), sort X.lt (elements s).
  Proof.
  intro s; repeat rewrite <- isok_iff; auto.
  Qed.

  Lemma elements_spec2w : forall (s : t) (Hs : Ok s), NoDupA X.eq (elements s).
  Proof.
  intro s; repeat rewrite <- isok_iff; auto.
  Qed.

  Lemma min_elt_spec1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s.
  Proof.
  destruct s; simpl; inversion 1; auto.
  Qed.

  Lemma min_elt_spec2 :
   forall (s : t) (x y : elt) (Hs : Ok s),
   min_elt s = Some x -> In y s -> ~ X.lt y x.
  Proof.
  induction s as [ | x s IH]; simpl; inversion 2; subst.
  intros; inv; try sort_inf_in; order.
  Qed.

  Lemma min_elt_spec3 : forall s : t, min_elt s = None -> Empty s.
  Proof.
  destruct s; simpl; red; intuition. inv. discriminate.
  Qed.

  Lemma max_elt_spec1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s.
  Proof.
  induction s as [ | x s IH]. inversion 1.
  destruct s as [ | y s]. simpl. inversion 1; subst; auto.
  right; apply IH; auto.
  Qed.

  Lemma max_elt_spec2 :
   forall (s : t) (x y : elt) (Hs : Ok s),
   max_elt s = Some x -> In y s -> ~ X.lt x y.
  Proof.
  induction s as [ | a s IH]. inversion 2.
  destruct s as [ | b s]. inversion 2; subst. intros; inv; order.
  intros. inv; auto.
  assert (~X.lt x b) by (apply IH; auto).
  assert (X.lt a b) by auto.
  order.
  Qed.

  Lemma max_elt_spec3 : forall s : t, max_elt s = None -> Empty s.
  Proof.
  induction s as [ | a s IH]. red; intuition; inv.
  destruct s as [ | b s]. inversion 1.
  intros; elim IH with b; auto.
  Qed.

  Definition choose_spec1 :
    forall (s : t) (x : elt), choose s = Some x -> In x s := min_elt_spec1.

  Definition choose_spec2 :
    forall s : t, choose s = None -> Empty s := min_elt_spec3.

  Lemma choose_spec3: forall s s' x x', Ok s -> Ok s' ->
   choose s = Some x -> choose s' = Some x' -> Equal s s' -> X.eq x x'.
  Proof.
   unfold choose; intros s s' x x' Hs Hs' Hx Hx' H.
   assert (~X.lt x x').
    apply min_elt_spec2 with s'; auto.
    rewrite <-H; auto using min_elt_spec1.
   assert (~X.lt x' x).
    apply min_elt_spec2 with s; auto.
    rewrite H; auto using min_elt_spec1.
   order.
  Qed.

  Lemma fold_spec :
   forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
   fold f s i = fold_left (flip f) (elements s) i.
  Proof.
  reflexivity.
  Qed.

  Lemma cardinal_spec :
   forall (s : t) (Hs : Ok s),
   cardinal s = length (elements s).
  Proof.
  auto.
  Qed.

  Lemma filter_inf :
   forall (s : t) (x : elt) (f : elt -> bool) (Hs : Ok s),
   Inf x s -> Inf x (filter f s).
  Proof.
  simple induction s; simpl.
  intuition.
  intros x l Hrec a f Hs Ha; inv.
  case (f x); auto.
  apply Hrec; auto.
  apply Inf_lt with x; auto.
  Qed.

  Global Instance filter_ok s f : forall `(Ok s), Ok (filter f s).
  Proof.
  repeat rewrite <- isok_iff; revert s f.
  simple induction s; simpl.
  auto.
  intros x l Hrec f Hs; inv.
  case (f x); auto.
  constructors; auto.
  apply filter_inf; auto.
  Qed.

  Lemma filter_spec :
   forall (s : t) (x : elt) (f : elt -> bool),
   Proper (X.eq==>eq) f ->
   (In x (filter f s) <-> In x s /\ f x = true).
  Proof.
  induction s; simpl; intros.
  split; intuition; inv.
  destruct (f a) eqn:F; rewrite !InA_cons, ?IHs; intuition.
  setoid_replace x with a; auto.
  setoid_replace a with x in F; auto; congruence.
  Qed.

  Lemma for_all_spec :
   forall (s : t) (f : elt -> bool),
   Proper (X.eq==>eq) f ->
   (for_all f s = true <-> For_all (fun x => f x = true) s).
  Proof.
  unfold For_all; induction s; simpl; intros.
  split; intros; auto. inv.
  destruct (f a) eqn:F.
  rewrite IHs; auto. firstorder. inv; auto.
  setoid_replace x with a; auto.
  split; intros H'. discriminate.
  rewrite H' in F; auto.
  Qed.

  Lemma exists_spec :
   forall (s : t) (f : elt -> bool),
   Proper (X.eq==>eq) f ->
   (exists_ f s = true <-> Exists (fun x => f x = true) s).
  Proof.
  unfold Exists; induction s; simpl; intros.
  firstorder. discriminate. inv.
  destruct (f a) eqn:F.
  firstorder.
  rewrite IHs; auto.
  firstorder.
  inv.
  setoid_replace a with x in F; auto; congruence.
  exists x; auto.
  Qed.

  Lemma partition_inf1 :
   forall (s : t) (f : elt -> bool) (x : elt) (Hs : Ok s),
   Inf x s -> Inf x (fst (partition f s)).
  Proof.
  intros s f x; repeat rewrite <- isok_iff; revert s f x.
  simple induction s; simpl.
  intuition.
  intros x l Hrec f a Hs Ha; inv.
  generalize (Hrec f a H).
  case (f x); case (partition f l); simpl.
  auto.
  intros; apply H2; apply Inf_lt with x; auto.
  Qed.

  Lemma partition_inf2 :
   forall (s : t) (f : elt -> bool) (x : elt) (Hs : Ok s),
   Inf x s -> Inf x (snd (partition f s)).
  Proof.
  intros s f x; repeat rewrite <- isok_iff; revert s f x.
  simple induction s; simpl.
  intuition.
  intros x l Hrec f a Hs Ha; inv.
  generalize (Hrec f a H).
  case (f x); case (partition f l); simpl.
  intros; apply H2; apply Inf_lt with x; auto.
  auto.
  Qed.

  Global Instance partition_ok1 s f : forall `(Ok s), Ok (fst (partition f s)).
  Proof.
  repeat rewrite <- isok_iff; revert s f.
  simple induction s; simpl.
  auto.
  intros x l Hrec f Hs; inv.
  generalize (Hrec f H); generalize (@partition_inf1 l f x).
  case (f x); case (partition f l); simpl; auto.
  Qed.

  Global Instance partition_ok2 s f : forall `(Ok s), Ok (snd (partition f s)).
  Proof.
  repeat rewrite <- isok_iff; revert s f.
  simple induction s; simpl.
  auto.
  intros x l Hrec f Hs; inv.
  generalize (Hrec f H); generalize (@partition_inf2 l f x).
  case (f x); case (partition f l); simpl; auto.
  Qed.

  Lemma partition_spec1 :
   forall (s : t) (f : elt -> bool),
   Proper (X.eq==>eq) f -> Equal (fst (partition f s)) (filter f s).
  Proof.
  simple induction s; simpl; auto; unfold Equal.
  split; auto.
  intros x l Hrec f Hf.
  generalize (Hrec f Hf); clear Hrec.
  destruct (partition f l) as [s1 s2]; simpl; intros.
  case (f x); simpl; auto.
  split; inversion_clear 1; auto.
  constructor 2; rewrite <- H; auto.
  constructor 2; rewrite H; auto.
  Qed.

  Lemma partition_spec2 :
   forall (s : t) (f : elt -> bool),
   Proper (X.eq==>eq) f ->
   Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof.
  simple induction s; simpl; auto; unfold Equal.
  split; auto.
  intros x l Hrec f Hf.
  generalize (Hrec f Hf); clear Hrec.
  destruct (partition f l) as [s1 s2]; simpl; intros.
  case (f x); simpl; auto.
  split; inversion_clear 1; auto.
  constructor 2; rewrite <- H; auto.
  constructor 2; rewrite H; auto.
  Qed.

  End ForNotations.

  Definition In := InA X.eq.
  Instance In_compat : Proper (X.eq==>eq==> iff) In.
  Proof. repeat red; intros; rewrite H, H0; auto. Qed.

  Module L := MakeListOrdering X.
  Definition eq := L.eq.
  Definition eq_equiv := L.eq_equiv.
  Definition lt l1 l2 :=
    exists l1' l2', Ok l1' /\ Ok l2' /\ eq l1 l1' /\ eq l2 l2' /\ L.lt l1' l2'.

  Instance lt_strorder : StrictOrder lt.
  Proof.
  split.
  intros s (s1 & s2 & B1 & B2 & E1 & E2 & L).
  repeat rewrite <- isok_iff in *.
  assert (eqlistA X.eq s1 s2).
   apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto using @ok with *.
   transitivity s; auto. symmetry; auto.
  rewrite H in L.
  apply (StrictOrder_Irreflexive s2); auto.
  intros s1 s2 s3 (s1' & s2' & B1 & B2 & E1 & E2 & L12)
                  (s2'' & s3' & B2' & B3 & E2' & E3 & L23).
  exists s1', s3'.
  repeat rewrite <- isok_iff in *.
  do 4 (split; trivial).
  assert (eqlistA X.eq s2' s2'').
   apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto using @ok with *.
   transitivity s2; auto. symmetry; auto.
  transitivity s2'; auto.
  rewrite H; auto.
  Qed.

  Instance lt_compat : Proper (eq==>eq==>iff) lt.
  Proof.
  intros s1 s2 E12 s3 s4 E34. split.
  intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
  exists s1', s3'; do 2 (split; trivial).
   split. transitivity s1; auto. symmetry; auto.
   split; auto. transitivity s3; auto. symmetry; auto.
  intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
  exists s1', s3'; do 2 (split; trivial).
   split. transitivity s2; auto.
   split; auto. transitivity s4; auto.
  Qed.

  Lemma compare_spec_aux : forall s s', CompSpec eq L.lt s s' (compare s s').
  Proof.
  induction s as [|x s IH]; intros [|x' s']; simpl; intuition. 
  elim_compare x x'; auto.
  Qed.

  Lemma compare_spec : forall s s', Ok s -> Ok s' ->
   CompSpec eq lt s s' (compare s s').
  Proof.
  intros s s' Hs Hs'.
  destruct (compare_spec_aux s s'); constructor; auto.
  exists s, s'; repeat split; auto using @ok.
  exists s', s; repeat split; auto using @ok.
  Qed.

End MakeRaw.

(** * Encapsulation

   Now, in order to really provide a functor implementing [S], we
   need to encapsulate everything into a type of strictly ordered lists. *)

Module Make (X: OrderedType) <: S with Module E := X.
 Module Raw := MakeRaw X.
 Include Raw2Sets X Raw.
End Make.

(** For this specific implementation, eq coincides with Leibniz equality *)

Require Eqdep_dec.

Module Type OrderedTypeWithLeibniz.
  Include OrderedType.
  Parameter eq_leibniz : forall x y, eq x y -> x = y.
End OrderedTypeWithLeibniz.

Module Type SWithLeibniz.
  Declare Module E : OrderedTypeWithLeibniz.
  Include SetsOn E.
  Parameter eq_leibniz : forall x y, eq x y -> x = y.
End SWithLeibniz.

Module MakeWithLeibniz (X: OrderedTypeWithLeibniz) <: SWithLeibniz with Module E := X.
  Module E := X.
  Module Raw := MakeRaw X.
  Include Raw2SetsOn X Raw.

  Lemma eq_leibniz_list : forall xs ys, eqlistA X.eq xs ys -> xs = ys.
  Proof.
    induction xs as [|x xs]; intros [|y ys] H; inversion H; [ | ].
    reflexivity.
    f_equal.
    apply X.eq_leibniz; congruence.
    apply IHxs; subst; assumption.
  Qed.

  Lemma eq_leibniz : forall s s', eq s s' -> s = s'.
  Proof.
    intros [xs Hxs] [ys Hys] Heq.
    change (equivlistA X.eq xs ys) in Heq.
    assert (H : eqlistA X.eq xs ys).
      rewrite <- Raw.isok_iff in Hxs, Hys.
      apply SortA_equivlistA_eqlistA with X.lt; auto with *.
    apply eq_leibniz_list in H.
    subst ys.
    f_equal.
    apply Eqdep_dec.eq_proofs_unicity.
    intros x y; destruct (bool_dec x y); tauto.
  Qed.

End MakeWithLeibniz.