summaryrefslogtreecommitdiff
path: root/theories/Logic/ChoiceFacts.v
blob: a1f4417c373c86cb031aaf4acb00833c182486a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: ChoiceFacts.v,v 1.7.2.1 2004/07/16 19:31:06 herbelin Exp $ i*)

(* We show that the functional formulation of the axiom of Choice
   (usual formulation in type theory) is equivalent to its relational
   formulation (only formulation of set theory) + the axiom of
   (parametric) definite description (aka axiom of unique choice) *)

(* This shows that the axiom of choice can be assumed (under its
   relational formulation) without known inconsistency with classical logic,
   though definite description conflicts with classical logic *)

Definition RelationalChoice :=
  forall (A B:Type) (R:A -> B -> Prop),
    (forall x:A,  exists y : B, R x y) ->
     exists R' : A -> B -> Prop,
      (forall x:A,
          exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')).

Definition FunctionalChoice :=
  forall (A B:Type) (R:A -> B -> Prop),
    (forall x:A,  exists y : B, R x y) ->
     exists f : A -> B, (forall x:A, R x (f x)).

Definition ParamDefiniteDescription :=
  forall (A B:Type) (R:A -> B -> Prop),
    (forall x:A,  exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) ->
     exists f : A -> B, (forall x:A, R x (f x)).

Lemma description_rel_choice_imp_funct_choice :
 ParamDefiniteDescription -> RelationalChoice -> FunctionalChoice.
intros Descr RelCh.
red in |- *; intros A B R H.
destruct (RelCh A B R H) as [R' H0].
destruct (Descr A B R') as [f H1].
intro x.
elim (H0 x); intros y [H2 [H3 H4]]; exists y; split; [ exact H3 | exact H4 ].
exists f; intro x.
elim (H0 x); intros y [H2 [H3 H4]].
rewrite <- (H4 (f x) (H1 x)).
exact H2.
Qed.

Lemma funct_choice_imp_rel_choice : FunctionalChoice -> RelationalChoice.
intros FunCh.
red in |- *; intros A B R H.
destruct (FunCh A B R H) as [f H0].
exists (fun x y => y = f x).
intro x; exists (f x); split;
 [ apply H0
 | split; [ reflexivity | intros y H1; symmetry  in |- *; exact H1 ] ].
Qed.

Lemma funct_choice_imp_description :
 FunctionalChoice -> ParamDefiniteDescription.
intros FunCh.
red in |- *; intros A B R H.
destruct (FunCh A B R) as [f H0].
(* 1 *)
intro x.
elim (H x); intros y [H0 H1].
exists y; exact H0.
(* 2 *)
exists f; exact H0.
Qed.

Theorem FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
 FunctionalChoice <-> RelationalChoice /\ ParamDefiniteDescription.
split.
intro H; split;
 [ exact (funct_choice_imp_rel_choice H)
 | exact (funct_choice_imp_description H) ].
intros [H H0]; exact (description_rel_choice_imp_funct_choice H0 H).
Qed.

(* We show that the guarded relational formulation of the axiom of Choice
   comes from the non guarded formulation in presence either of the
   independance of premises or proof-irrelevance *)

Definition GuardedRelationalChoice :=
  forall (A B:Type) (P:A -> Prop) (R:A -> B -> Prop),
    (forall x:A, P x ->  exists y : B, R x y) ->
     exists R' : A -> B -> Prop,
      (forall x:A,
         P x ->
          exists y : B, R x y /\ R' x y /\ (forall y':B, R' x y' -> y = y')).

Definition ProofIrrelevance := forall (A:Prop) (a1 a2:A), a1 = a2.

Lemma rel_choice_and_proof_irrel_imp_guarded_rel_choice :
 RelationalChoice -> ProofIrrelevance -> GuardedRelationalChoice.
Proof.
intros rel_choice proof_irrel.
red in |- *; intros A B P R H.
destruct (rel_choice _ _ (fun (x:sigT P) (y:B) => R (projT1 x) y)) as [R' H0].
intros [x HPx].
destruct (H x HPx) as [y HRxy].
exists y; exact HRxy.
set (R'' := fun (x:A) (y:B) =>  exists H : P x, R' (existT P x H) y).
exists R''; intros x HPx.
destruct (H0 (existT P x HPx)) as [y [HRxy [HR'xy Huniq]]].
exists y. split.
  exact HRxy.
  split.
    red in |- *; exists HPx; exact HR'xy.
    intros y' HR''xy'.
      apply Huniq.
      unfold R'' in HR''xy'.
      destruct HR''xy' as [H'Px HR'xy'].
      rewrite proof_irrel with (a1 := HPx) (a2 := H'Px).
      exact HR'xy'.
Qed.

Definition IndependenceOfPremises :=
  forall (A:Type) (P:A -> Prop) (Q:Prop),
    (Q ->  exists x : _, P x) ->  exists x : _, Q -> P x.

Lemma rel_choice_indep_of_premises_imp_guarded_rel_choice :
 RelationalChoice -> IndependenceOfPremises -> GuardedRelationalChoice.
Proof.
intros RelCh IndPrem.
red in |- *; intros A B P R H.
destruct (RelCh A B (fun x y => P x -> R x y)) as [R' H0].
  intro x. apply IndPrem.
    apply H.
  exists R'.
  intros x HPx.
    destruct (H0 x) as [y [H1 H2]].
    exists y. split. 
      apply (H1 HPx).
      exact H2.
Qed.