summaryrefslogtreecommitdiff
path: root/theories/Lists/TheoryList.v
blob: bb5c7b17819a1b83a9115bd7acf7cbe347bf2066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id$ i*)

(** Some programs and results about lists following CAML Manual *)

Require Export List.
Set Implicit Arguments.

Local Notation "[ ]" := nil (at level 0).
Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..) (at level 0).

Section Lists.

Variable A : Type.

(**********************)
(** The null function *)
(**********************)

Definition Isnil (l:list A) : Prop := nil = l.

Lemma Isnil_nil : Isnil nil.
Proof.
red in |- *; auto.
Qed.
Hint Resolve Isnil_nil.

Lemma not_Isnil_cons : forall (a:A) (l:list A), ~ Isnil (a :: l).
Proof.
unfold Isnil in |- *.
intros; discriminate.
Qed.

Hint Resolve Isnil_nil not_Isnil_cons.

Lemma Isnil_dec : forall l:list A, {Isnil l} + {~ Isnil l}.
Proof.
intro l; case l; auto.
(*
Realizer (fun l => match l with
  | nil => true
  | _ => false
  end).
*)
Qed.

(************************)
(** The Uncons function *)
(************************)

Lemma Uncons :
 forall l:list A, {a : A &  {m : list A | a :: m = l}} + {Isnil l}.
Proof.
intro l; case l.
auto.
intros a m; intros; left; exists a; exists m; reflexivity.
(*
Realizer (fun l => match l with
  | nil => error
  | (cons a m) => value (a,m)
  end).
*)
Qed.

(********************************)
(** The head function           *)
(********************************)

Lemma Hd :
 forall l:list A, {a : A |  exists m : list A, a :: m = l} + {Isnil l}.
Proof.
intro l; case l.
auto.
intros a m; intros; left; exists a; exists m; reflexivity.
(*
Realizer (fun l => match l with
  | nil => error
  | (cons a m) => value a
  end).
*)
Qed.

Lemma Tl :
 forall l:list A,
   {m : list A | (exists a : A, a :: m = l) \/ Isnil l /\ Isnil m}.
Proof.
intro l; case l.
exists (nil (A:=A)); auto.
intros a m; intros; exists m; left; exists a; reflexivity.
(*
Realizer (fun l => match l with
  | nil => nil
  | (cons a m) => m
  end).
*)
Qed.

(****************************************)
(** Length of lists                     *)
(****************************************)

(* length is defined in List *)
Fixpoint Length_l (l:list A) (n:nat) : nat :=
  match l with
  | nil => n
  | _ :: m => Length_l m (S n)
  end.

(* A tail recursive version *)
Lemma Length_l_pf : forall (l:list A) (n:nat), {m : nat | n + length l = m}.
Proof.
induction l as [| a m lrec].
intro n; exists n; simpl in |- *; auto.
intro n; elim (lrec (S n)); simpl in |- *; intros.
exists x; transitivity (S (n + length m)); auto.
(*
Realizer Length_l.
*)
Qed.

Lemma Length : forall l:list A, {m : nat | length l = m}.
Proof.
intro l. apply (Length_l_pf l 0).
(*
Realizer (fun l -> Length_l_pf l O).
*)
Qed.

(*******************************)
(** Members of lists           *)
(*******************************)
Inductive In_spec (a:A) : list A -> Prop :=
  | in_hd : forall l:list A, In_spec a (a :: l)
  | in_tl : forall (l:list A) (b:A), In a l -> In_spec a (b :: l).
Hint Resolve in_hd in_tl.
Hint Unfold In.
Hint Resolve in_cons.

Theorem In_In_spec : forall (a:A) (l:list A), In a l <-> In_spec a l.
split.
elim l;
 [ intros; contradiction
 | intros; elim H0; [ intros; rewrite H1; auto | auto ] ].
intros; elim H; auto.
Qed.

Hypothesis eqA_dec : forall a b:A, {a = b} + {a <> b}.

Fixpoint mem (a:A) (l:list A) : bool :=
  match l with
  | nil => false
  | b :: m => if eqA_dec a b then true else mem a m
  end.

Hint Unfold In.
Lemma Mem : forall (a:A) (l:list A), {In a l} + {AllS (fun b:A => b <> a) l}.
Proof.
induction l.
auto.
elim (eqA_dec a a0).
auto.
simpl in |- *. elim IHl; auto.
(*
Realizer mem.
*)
Qed.

(*********************************)
(** Index of elements            *)
(*********************************)

Require Import Le.
Require Import Lt.

Inductive nth_spec : list A -> nat -> A -> Prop :=
  | nth_spec_O : forall (a:A) (l:list A), nth_spec (a :: l) 1 a
  | nth_spec_S :
      forall (n:nat) (a b:A) (l:list A),
        nth_spec l n a -> nth_spec (b :: l) (S n) a.
Hint Resolve nth_spec_O nth_spec_S.

Inductive fst_nth_spec : list A -> nat -> A -> Prop :=
  | fst_nth_O : forall (a:A) (l:list A), fst_nth_spec (a :: l) 1 a
  | fst_nth_S :
      forall (n:nat) (a b:A) (l:list A),
        a <> b -> fst_nth_spec l n a -> fst_nth_spec (b :: l) (S n) a.
Hint Resolve fst_nth_O fst_nth_S.

Lemma fst_nth_nth :
 forall (l:list A) (n:nat) (a:A), fst_nth_spec l n a -> nth_spec l n a.
Proof.
induction 1; auto.
Qed.
Hint Immediate fst_nth_nth.

Lemma nth_lt_O : forall (l:list A) (n:nat) (a:A), nth_spec l n a -> 0 < n.
Proof.
induction 1; auto.
Qed.

Lemma nth_le_length :
 forall (l:list A) (n:nat) (a:A), nth_spec l n a -> n <= length l.
Proof.
induction 1; simpl in |- *; auto with arith.
Qed.

Fixpoint Nth_func (l:list A) (n:nat) : Exc A :=
  match l, n with
  | a :: _, S O => value a
  | _ :: l', S (S p) => Nth_func l' (S p)
  | _, _ => error
  end.

Lemma Nth :
 forall (l:list A) (n:nat),
   {a : A | nth_spec l n a} + {n = 0 \/ length l < n}.
Proof.
induction l as [| a l IHl].
intro n; case n; simpl in |- *; auto with arith.
intro n; destruct n as [| [| n1]]; simpl in |- *; auto.
left; exists a; auto.
destruct (IHl (S n1)) as [[b]| o].
left; exists b; auto.
right; destruct o.
absurd (S n1 = 0); auto.
auto with arith.
(*
Realizer Nth_func.
*)
Qed.

Lemma Item :
 forall (l:list A) (n:nat), {a : A | nth_spec l (S n) a} + {length l <= n}.
Proof.
intros l n; case (Nth l (S n)); intro.
case s; intro a; left; exists a; auto.
right; case o; intro.
absurd (S n = 0); auto.
auto with arith.
Qed.

Require Import Minus.
Require Import DecBool.

Fixpoint index_p (a:A) (l:list A) : nat -> Exc nat :=
  match l with
  | nil => fun p => error
  | b :: m => fun p => ifdec (eqA_dec a b) (value p) (index_p a m (S p))
  end.

Lemma Index_p :
 forall (a:A) (l:list A) (p:nat),
   {n : nat | fst_nth_spec l (S n - p) a} + {AllS (fun b:A => a <> b) l}.
Proof.
induction l as [| b m irec].
auto.
intro p.
destruct (eqA_dec a b) as [e| e].
left; exists p.
destruct e; elim minus_Sn_m; trivial; elim minus_n_n; auto with arith.
destruct (irec (S p)) as [[n H]| ].
left; exists n; auto with arith.
elim minus_Sn_m; auto with arith.
apply lt_le_weak; apply lt_O_minus_lt; apply nth_lt_O with m a;
 auto with arith.
auto.
Qed.

Lemma Index :
 forall (a:A) (l:list A),
   {n : nat | fst_nth_spec l n a} + {AllS (fun b:A => a <> b) l}.

Proof.
intros a l; case (Index_p a l 1); auto.
intros [n P]; left; exists n; auto.
rewrite (minus_n_O n); trivial.
(*
Realizer (fun a l -> Index_p a l (S O)).
*)
Qed.

Section Find_sec.
Variables R P : A -> Prop.

Inductive InR : list A -> Prop :=
  | inR_hd : forall (a:A) (l:list A), R a -> InR (a :: l)
  | inR_tl : forall (a:A) (l:list A), InR l -> InR (a :: l).
Hint Resolve inR_hd inR_tl.

Definition InR_inv (l:list A) :=
  match l with
  | nil => False
  | b :: m => R b \/ InR m
  end.

Lemma InR_INV : forall l:list A, InR l -> InR_inv l.
Proof.
induction 1; simpl in |- *; auto.
Qed.

Lemma InR_cons_inv : forall (a:A) (l:list A), InR (a :: l) -> R a \/ InR l.
Proof.
intros a l H; exact (InR_INV H).
Qed.

Lemma InR_or_app : forall l m:list A, InR l \/ InR m -> InR (l ++ m).
Proof.
intros l m [| ].
induction 1; simpl in |- *; auto.
intro. induction l; simpl in |- *; auto.
Qed.

Lemma InR_app_or : forall l m:list A, InR (l ++ m) -> InR l \/ InR m.
Proof.
intros l m; elim l; simpl in |- *; auto.
intros b l' Hrec IAc; elim (InR_cons_inv IAc); auto.
intros; elim Hrec; auto.
Qed.

Hypothesis RS_dec : forall a:A, {R a} + {P a}.

Fixpoint find (l:list A) : Exc A :=
  match l with
  | nil => error
  | a :: m => ifdec (RS_dec a) (value a) (find m)
  end.

Lemma Find : forall l:list A, {a : A | In a l &  R a} + {AllS P l}.
Proof.
induction l as [| a m [[b H1 H2]| H]]; auto.
left; exists b; auto.
destruct (RS_dec a).
left; exists a; auto.
auto.
(*
Realizer find.
*)
Qed.

Variable B : Type.
Variable T : A -> B -> Prop.

Variable TS_dec : forall a:A, {c : B | T a c} + {P a}.

Fixpoint try_find (l:list A) : Exc B :=
  match l with
  | nil => error
  | a :: l1 =>
      match TS_dec a with
      | inleft (exist c _) => value c
      | inright _ => try_find l1
      end
  end.

Lemma Try_find :
 forall l:list A, {c : B |  exists2 a : A, In a l & T a c} + {AllS P l}.
Proof.
induction l as [| a m [[b H1]| H]].
auto.
left; exists b; destruct H1 as [a' H2 H3]; exists a'; auto.
destruct (TS_dec a) as [[c H1]| ].
left; exists c.
exists a; auto.
auto.
(*
Realizer try_find.
*)
Qed.

End Find_sec.

Section Assoc_sec.

Variable B : Type.
Fixpoint assoc (a:A) (l:list (A * B)) :
 Exc B :=
  match l with
  | nil => error
  | (a', b) :: m => ifdec (eqA_dec a a') (value b) (assoc a m)
  end.

Inductive AllS_assoc (P:A -> Prop) : list (A * B) -> Prop :=
  | allS_assoc_nil : AllS_assoc P nil
  | allS_assoc_cons :
      forall (a:A) (b:B) (l:list (A * B)),
        P a -> AllS_assoc P l -> AllS_assoc P ((a, b) :: l).

Hint Resolve allS_assoc_nil allS_assoc_cons.

(* The specification seems too weak: it is enough to return b if the
   list has at least an element (a,b); probably the intention is to have
   the specification

   (a:A)(l:(list A*B)){b:B|(In_spec (a,b) l)}+{(AllS_assoc [a':A]~(a=a') l)}.
*)

Lemma Assoc :
 forall (a:A) (l:list (A * B)), B + {AllS_assoc (fun a':A => a <> a') l}.
Proof.
induction l as [| [a' b] m assrec]. auto.
destruct (eqA_dec a a').
left; exact b.
destruct assrec as [b'| ].
left; exact b'.
right; auto.
(*
Realizer assoc.
*)
Qed.

End Assoc_sec.

End Lists.

Hint Resolve Isnil_nil not_Isnil_cons in_hd in_tl in_cons : datatypes.
Hint Immediate fst_nth_nth: datatypes.