summaryrefslogtreecommitdiff
path: root/theories/Lists/Streams.v
blob: 7bc6a09d04e707082a814ece8cd90fe45a6b9d8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Streams.v 8642 2006-03-17 10:09:02Z notin $ i*)

Set Implicit Arguments.

(** Streams *)

Section Streams.

Variable A : Set.

CoInductive Stream : Set :=
    Cons : A -> Stream -> Stream.


Definition hd (x:Stream) := match x with
                            | Cons a _ => a
                            end.

Definition tl (x:Stream) := match x with
                            | Cons _ s => s
                            end.


Fixpoint Str_nth_tl (n:nat) (s:Stream) {struct n} : Stream :=
  match n with
  | O => s
  | S m => Str_nth_tl m (tl s)
  end.

Definition Str_nth (n:nat) (s:Stream) : A := hd (Str_nth_tl n s).


Lemma unfold_Stream :
 forall x:Stream, x = match x with
                      | Cons a s => Cons a s
                      end. 
Proof.
  intro x.
  case x.
  trivial.
Qed.

Lemma tl_nth_tl :
 forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s).
Proof.
  simple induction n; simpl in |- *; auto.
Qed.
Hint Resolve tl_nth_tl: datatypes v62.

Lemma Str_nth_tl_plus :
 forall (n m:nat) (s:Stream),
   Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s.
simple induction n; simpl in |- *; intros; auto with datatypes.
rewrite <- H.
rewrite tl_nth_tl; trivial with datatypes.
Qed.

Lemma Str_nth_plus :
 forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s.
intros; unfold Str_nth in |- *; rewrite Str_nth_tl_plus;
 trivial with datatypes.
Qed.

(** Extensional Equality between two streams  *)

CoInductive EqSt (s1 s2: Stream) : Prop :=
    eqst :
        hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

(** A coinduction principle *)

Ltac coinduction proof :=
  cofix proof; intros; constructor;
   [ clear proof | try (apply proof; clear proof) ].


(** Extensional equality is an equivalence relation *)

Theorem EqSt_reflex : forall s:Stream, EqSt s s.
coinduction EqSt_reflex.
reflexivity.
Qed.

Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1.
coinduction Eq_sym.
case H; intros; symmetry  in |- *; assumption.
case H; intros; assumption.
Qed.


Theorem trans_EqSt :
 forall s1 s2 s3:Stream, EqSt s1 s2 -> EqSt s2 s3 -> EqSt s1 s3.
coinduction Eq_trans.
transitivity (hd s2).
case H; intros; assumption.
case H0; intros; assumption.
apply (Eq_trans (tl s1) (tl s2) (tl s3)).
case H; trivial with datatypes.
case H0; trivial with datatypes.
Qed.

(** The definition given is equivalent to require the elements at each
    position to be equal *)

Theorem eqst_ntheq :
 forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2.
unfold Str_nth in |- *; simple induction n.
intros s1 s2 H; case H; trivial with datatypes.
intros m hypind.
simpl in |- *.
intros s1 s2 H.
apply hypind.
case H; trivial with datatypes.
Qed.

Theorem ntheq_eqst :
 forall s1 s2:Stream,
   (forall n:nat, Str_nth n s1 = Str_nth n s2) -> EqSt s1 s2.
coinduction Equiv2.
apply (H 0).
intros n; apply (H (S n)).
Qed.

Section Stream_Properties.

Variable P : Stream -> Prop.

(*i
Inductive Exists : Stream -> Prop :=
  | Here    : forall x:Stream, P x -> Exists x
  | Further : forall x:Stream, ~ P x -> Exists (tl x) -> Exists x.
i*)

Inductive Exists ( x: Stream ) : Prop :=
  | Here : P x -> Exists x
  | Further : Exists (tl x) -> Exists x.

CoInductive ForAll (x: Stream) : Prop :=
    HereAndFurther : P x -> ForAll (tl x) -> ForAll x.


Section Co_Induction_ForAll.
Variable Inv : Stream -> Prop.
Hypothesis InvThenP : forall x:Stream, Inv x -> P x.
Hypothesis InvIsStable : forall x:Stream, Inv x -> Inv (tl x).

Theorem ForAll_coind : forall x:Stream, Inv x -> ForAll x.
coinduction ForAll_coind; auto.
Qed.
End Co_Induction_ForAll.

End Stream_Properties.

End Streams.

Section Map.
Variables A B : Set.
Variable f : A -> B.
CoFixpoint map (s:Stream A) : Stream B := Cons (f (hd s)) (map (tl s)).
End Map.

Section Constant_Stream.
Variable A : Set.
Variable a : A.
CoFixpoint const  : Stream A := Cons a const.
End Constant_Stream.

Unset Implicit Arguments.