summaryrefslogtreecommitdiff
path: root/theories/Init/Specif.v
blob: 7663231260f45ddbe5ee7b8d48b914a23934551a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** Basic specifications : sets that may contain logical information *)

Set Implicit Arguments.
Set Reversible Pattern Implicit.

Require Import Notations.
Require Import Datatypes.
Require Import Logic.

(** Subsets and Sigma-types *)

(** [(sig A P)], or more suggestively [{x:A | P x}], denotes the subset
    of elements of the type [A] which satisfy the predicate [P].
    Similarly [(sig2 A P Q)], or [{x:A | P x & Q x}], denotes the subset
    of elements of the type [A] which satisfy both [P] and [Q]. *)

Inductive sig (A:Type) (P:A -> Prop) : Type :=
    exist : forall x:A, P x -> sig P.

Inductive sig2 (A:Type) (P Q:A -> Prop) : Type :=
    exist2 : forall x:A, P x -> Q x -> sig2 P Q.

(** [(sigT A P)], or more suggestively [{x:A & (P x)}] is a Sigma-type.
    Similarly for [(sigT2 A P Q)], also written [{x:A & (P x) & (Q x)}]. *)

Inductive sigT (A:Type) (P:A -> Type) : Type :=
    existT : forall x:A, P x -> sigT P.

Inductive sigT2 (A:Type) (P Q:A -> Type) : Type :=
    existT2 : forall x:A, P x -> Q x -> sigT2 P Q.

(* Notations *)

Arguments sig (A P)%type.
Arguments sig2 (A P Q)%type.
Arguments sigT (A P)%type.
Arguments sigT2 (A P Q)%type.

Notation "{ x  |  P }" := (sig (fun x => P)) : type_scope.
Notation "{ x  |  P  & Q }" := (sig2 (fun x => P) (fun x => Q)) : type_scope.
Notation "{ x : A  |  P }" := (sig (A:=A) (fun x => P)) : type_scope.
Notation "{ x : A  |  P  & Q }" := (sig2 (A:=A) (fun x => P) (fun x => Q)) :
  type_scope.
Notation "{ x  &  P }" := (sigT (fun x => P)) : type_scope.
Notation "{ x : A  & P }" := (sigT (A:=A) (fun x => P)) : type_scope.
Notation "{ x : A  & P  & Q }" := (sigT2 (A:=A) (fun x => P) (fun x => Q)) :
  type_scope.

Notation "{ ' pat  |  P }" := (sig (fun pat => P)) : type_scope.
Notation "{ ' pat  |  P  & Q }" := (sig2 (fun pat => P) (fun pat => Q)) : type_scope.
Notation "{ ' pat : A  |  P }" := (sig (A:=A) (fun pat => P)) : type_scope.
Notation "{ ' pat : A  |  P  & Q }" := (sig2 (A:=A) (fun pat => P) (fun pat => Q)) :
  type_scope.
Notation "{ ' pat : A  & P }" := (sigT (A:=A) (fun pat => P)) : type_scope.
Notation "{ ' pat : A  & P  & Q }" := (sigT2 (A:=A) (fun pat => P) (fun pat => Q)) :
  type_scope.

Add Printing Let sig.
Add Printing Let sig2.
Add Printing Let sigT.
Add Printing Let sigT2.


(** Projections of [sig]

    An element [y] of a subset [{x:A | (P x)}] is the pair of an [a]
    of type [A] and of a proof [h] that [a] satisfies [P].  Then
    [(proj1_sig y)] is the witness [a] and [(proj2_sig y)] is the
    proof of [(P a)] *)

(* Set Universe Polymorphism. *)
Section Subset_projections.

  Variable A : Type.
  Variable P : A -> Prop.

  Definition proj1_sig (e:sig P) := match e with
                                    | exist _ a b => a
                                    end.

  Definition proj2_sig (e:sig P) :=
    match e return P (proj1_sig e) with
    | exist _ a b => b
    end.

End Subset_projections.


(** [sig2] of a predicate can be projected to a [sig].

    This allows [proj1_sig] and [proj2_sig] to be usable with [sig2].

    The [let] statements occur in the body of the [exist] so that
    [proj1_sig] of a coerced [X : sig2 P Q] will unify with [let (a,
    _, _) := X in a] *)

Definition sig_of_sig2 (A : Type) (P Q : A -> Prop) (X : sig2 P Q) : sig P
  := exist P
           (let (a, _, _) := X in a)
           (let (x, p, _) as s return (P (let (a, _, _) := s in a)) := X in p).

(** Projections of [sig2]

    An element [y] of a subset [{x:A | (P x) & (Q x)}] is the triple
    of an [a] of type [A], a of a proof [h] that [a] satisfies [P],
    and a proof [h'] that [a] satisfies [Q].  Then
    [(proj1_sig (sig_of_sig2 y))] is the witness [a],
    [(proj2_sig (sig_of_sig2 y))] is the proof of [(P a)], and
    [(proj3_sig y)] is the proof of [(Q a)]. *)

Section Subset_projections2.

  Variable A : Type.
  Variables P Q : A -> Prop.

  Definition proj3_sig (e : sig2 P Q) :=
    let (a, b, c) return Q (proj1_sig (sig_of_sig2 e)) := e in c.

End Subset_projections2.


(** Projections of [sigT]

    An element [x] of a sigma-type [{y:A & P y}] is a dependent pair
    made of an [a] of type [A] and an [h] of type [P a].  Then,
    [(projT1 x)] is the first projection and [(projT2 x)] is the
    second projection, the type of which depends on the [projT1]. *)



Section Projections.

  Variable A : Type.
  Variable P : A -> Type.

  Definition projT1 (x:sigT P) : A := match x with
                                      | existT _ a _ => a
                                      end.

  Definition projT2 (x:sigT P) : P (projT1 x) :=
    match x return P (projT1 x) with
    | existT _ _ h => h
    end.

End Projections.

(** [sigT2] of a predicate can be projected to a [sigT].

    This allows [projT1] and [projT2] to be usable with [sigT2].

    The [let] statements occur in the body of the [existT] so that
    [projT1] of a coerced [X : sigT2 P Q] will unify with [let (a,
    _, _) := X in a] *)

Definition sigT_of_sigT2 (A : Type) (P Q : A -> Type) (X : sigT2 P Q) : sigT P
  := existT P
            (let (a, _, _) := X in a)
            (let (x, p, _) as s return (P (let (a, _, _) := s in a)) := X in p).

(** Projections of [sigT2]

    An element [x] of a sigma-type [{y:A & P y & Q y}] is a dependent
    pair made of an [a] of type [A], an [h] of type [P a], and an [h']
    of type [Q a].  Then, [(projT1 (sigT_of_sigT2 x))] is the first
    projection, [(projT2 (sigT_of_sigT2 x))] is the second projection,
    and [(projT3 x)] is the third projection, the types of which
    depends on the [projT1]. *)

Section Projections2.

  Variable A : Type.
  Variables P Q : A -> Type.

  Definition projT3 (e : sigT2 P Q) :=
    let (a, b, c) return Q (projT1 (sigT_of_sigT2 e)) := e in c.

End Projections2.

(** [sigT] of a predicate is equivalent to [sig] *)

Definition sig_of_sigT (A : Type) (P : A -> Prop) (X : sigT P) : sig P
  := exist P (projT1 X) (projT2 X).

Definition sigT_of_sig (A : Type) (P : A -> Prop) (X : sig P) : sigT P
  := existT P (proj1_sig X) (proj2_sig X).

(** [sigT2] of a predicate is equivalent to [sig2] *)

Definition sig2_of_sigT2 (A : Type) (P Q : A -> Prop) (X : sigT2 P Q) : sig2 P Q
  := exist2 P Q (projT1 (sigT_of_sigT2 X)) (projT2 (sigT_of_sigT2 X)) (projT3 X).

Definition sigT2_of_sig2 (A : Type) (P Q : A -> Prop) (X : sig2 P Q) : sigT2 P Q
  := existT2 P Q (proj1_sig (sig_of_sig2 X)) (proj2_sig (sig_of_sig2 X)) (proj3_sig X).

(** η Principles *)
Definition sigT_eta {A P} (p : { a : A & P a })
  : p = existT _ (projT1 p) (projT2 p).
Proof. destruct p; reflexivity. Defined.

Definition sig_eta {A P} (p : { a : A | P a })
  : p = exist _ (proj1_sig p) (proj2_sig p).
Proof. destruct p; reflexivity. Defined.

Definition sigT2_eta {A P Q} (p : { a : A & P a & Q a })
  : p = existT2 _ _ (projT1 (sigT_of_sigT2 p)) (projT2 (sigT_of_sigT2 p)) (projT3 p).
Proof. destruct p; reflexivity. Defined.

Definition sig2_eta {A P Q} (p : { a : A | P a & Q a })
  : p = exist2 _ _ (proj1_sig (sig_of_sig2 p)) (proj2_sig (sig_of_sig2 p)) (proj3_sig p).
Proof. destruct p; reflexivity. Defined.

(** [exists x : A, B] is equivalent to [inhabited {x : A | B}] *)
Lemma exists_to_inhabited_sig {A P} : (exists x : A, P x) -> inhabited {x : A | P x}.
Proof.
  intros [x y]. exact (inhabits (exist _ x y)).
Qed.

Lemma inhabited_sig_to_exists {A P} : inhabited {x : A | P x} -> exists x : A, P x.
Proof.
  intros [[x y]];exists x;exact y.
Qed.

(** Equality of sigma types *)
Import EqNotations.
Local Notation "'rew' 'dependent' H 'in' H'"
  := (match H with
      | eq_refl => H'
      end)
       (at level 10, H' at level 10,
        format "'[' 'rew'  'dependent'  '/    ' H  in  '/' H' ']'").

(** Equality for [sigT] *)
Section sigT.
  Local Unset Implicit Arguments.
  (** Projecting an equality of a pair to equality of the first components *)
  Definition projT1_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v)
    : projT1 u = projT1 v
    := f_equal (@projT1 _ _) p.

  (** Projecting an equality of a pair to equality of the second components *)
  Definition projT2_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v)
    : rew projT1_eq p in projT2 u = projT2 v
    := rew dependent p in eq_refl.

  (** Equality of [sigT] is itself a [sigT] (forwards-reasoning version) *)
  Definition eq_existT_uncurried {A : Type} {P : A -> Type} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
             (pq : { p : u1 = v1 & rew p in u2 = v2 })
    : existT _ u1 u2 = existT _ v1 v2.
  Proof.
    destruct pq as [p q].
    destruct q; simpl in *.
    destruct p; reflexivity.
  Defined.

  (** Equality of [sigT] is itself a [sigT] (backwards-reasoning version) *)
  Definition eq_sigT_uncurried {A : Type} {P : A -> Type} (u v : { a : A & P a })
             (pq : { p : projT1 u = projT1 v & rew p in projT2 u = projT2 v })
    : u = v.
  Proof.
    destruct u as [u1 u2], v as [v1 v2]; simpl in *.
    apply eq_existT_uncurried; exact pq.
  Defined.

  (** Curried version of proving equality of sigma types *)
  Definition eq_sigT {A : Type} {P : A -> Type} (u v : { a : A & P a })
             (p : projT1 u = projT1 v) (q : rew p in projT2 u = projT2 v)
    : u = v
    := eq_sigT_uncurried u v (existT _ p q).

  (** Equality of [sigT] when the property is an hProp *)
  Definition eq_sigT_hprop {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A & P a })
             (p : projT1 u = projT1 v)
    : u = v
    := eq_sigT u v p (P_hprop _ _ _).

  (** Equivalence of equality of [sigT] with a [sigT] of equality *)
  (** We could actually prove an isomorphism here, and not just [<->],
      but for simplicity, we don't. *)
  Definition eq_sigT_uncurried_iff {A P}
             (u v : { a : A & P a })
    : u = v <-> { p : projT1 u = projT1 v & rew p in projT2 u = projT2 v }.
  Proof.
    split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT_uncurried ].
  Defined.

  (** Induction principle for [@eq (sigT _)] *)
  Definition eq_sigT_rect {A P} {u v : { a : A & P a }} (Q : u = v -> Type)
             (f : forall p q, Q (eq_sigT u v p q))
    : forall p, Q p.
  Proof. intro p; specialize (f (projT1_eq p) (projT2_eq p)); destruct u, p; exact f. Defined.
  Definition eq_sigT_rec {A P u v} (Q : u = v :> { a : A & P a } -> Set) := eq_sigT_rect Q.
  Definition eq_sigT_ind {A P u v} (Q : u = v :> { a : A & P a } -> Prop) := eq_sigT_rec Q.

  (** Equivalence of equality of [sigT] involving hProps with equality of the first components *)
  Definition eq_sigT_hprop_iff {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A & P a })
    : u = v <-> (projT1 u = projT1 v)
    := conj (fun p => f_equal (@projT1 _ _) p) (eq_sigT_hprop P_hprop u v).

  (** Non-dependent classification of equality of [sigT] *)
  Definition eq_sigT_nondep {A B : Type} (u v : { a : A & B })
             (p : projT1 u = projT1 v) (q : projT2 u = projT2 v)
    : u = v
    := @eq_sigT _ _ u v p (eq_trans (rew_const _ _) q).

  (** Classification of transporting across an equality of [sigT]s *)
  Lemma rew_sigT {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x & Q x p }) {y} (H : x = y)
    : rew [fun a => { p : P a & Q a p }] H in u
      = existT
          (Q y)
          (rew H in projT1 u)
          (rew dependent H in (projT2 u)).
  Proof.
    destruct H, u; reflexivity.
  Defined.
End sigT.

(** Equality for [sig] *)
Section sig.
  Local Unset Implicit Arguments.
  (** Projecting an equality of a pair to equality of the first components *)
  Definition proj1_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v)
    : proj1_sig u = proj1_sig v
    := f_equal (@proj1_sig _ _) p.

  (** Projecting an equality of a pair to equality of the second components *)
  Definition proj2_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v)
    : rew proj1_sig_eq p in proj2_sig u = proj2_sig v
    := rew dependent p in eq_refl.

  (** Equality of [sig] is itself a [sig] (forwards-reasoning version) *)
  Definition eq_exist_uncurried {A : Type} {P : A -> Prop} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
             (pq : { p : u1 = v1 | rew p in u2 = v2 })
    : exist _ u1 u2 = exist _ v1 v2.
  Proof.
    destruct pq as [p q].
    destruct q; simpl in *.
    destruct p; reflexivity.
  Defined.

  (** Equality of [sig] is itself a [sig] (backwards-reasoning version) *)
  Definition eq_sig_uncurried {A : Type} {P : A -> Prop} (u v : { a : A | P a })
             (pq : { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v })
    : u = v.
  Proof.
    destruct u as [u1 u2], v as [v1 v2]; simpl in *.
    apply eq_exist_uncurried; exact pq.
  Defined.

  (** Curried version of proving equality of sigma types *)
  Definition eq_sig {A : Type} {P : A -> Prop} (u v : { a : A | P a })
             (p : proj1_sig u = proj1_sig v) (q : rew p in proj2_sig u = proj2_sig v)
    : u = v
    := eq_sig_uncurried u v (exist _ p q).

  (** Induction principle for [@eq (sig _)] *)
  Definition eq_sig_rect {A P} {u v : { a : A | P a }} (Q : u = v -> Type)
             (f : forall p q, Q (eq_sig u v p q))
    : forall p, Q p.
  Proof. intro p; specialize (f (proj1_sig_eq p) (proj2_sig_eq p)); destruct u, p; exact f. Defined.
  Definition eq_sig_rec {A P u v} (Q : u = v :> { a : A | P a } -> Set) := eq_sig_rect Q.
  Definition eq_sig_ind {A P u v} (Q : u = v :> { a : A | P a } -> Prop) := eq_sig_rec Q.

  (** Equality of [sig] when the property is an hProp *)
  Definition eq_sig_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A | P a })
             (p : proj1_sig u = proj1_sig v)
    : u = v
    := eq_sig u v p (P_hprop _ _ _).

  (** Equivalence of equality of [sig] with a [sig] of equality *)
  (** We could actually prove an isomorphism here, and not just [<->],
      but for simplicity, we don't. *)
  Definition eq_sig_uncurried_iff {A} {P : A -> Prop}
             (u v : { a : A | P a })
    : u = v <-> { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v }.
  Proof.
    split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig_uncurried ].
  Defined.

  (** Equivalence of equality of [sig] involving hProps with equality of the first components *)
  Definition eq_sig_hprop_iff {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
             (u v : { a : A | P a })
    : u = v <-> (proj1_sig u = proj1_sig v)
    := conj (fun p => f_equal (@proj1_sig _ _) p) (eq_sig_hprop P_hprop u v).

  Lemma rew_sig {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x | Q x p }) {y} (H : x = y)
    : rew [fun a => { p : P a | Q a p }] H in u
      = exist
          (Q y)
          (rew H in proj1_sig u)
          (rew dependent H in proj2_sig u).
  Proof.
    destruct H, u; reflexivity.
  Defined.
End sig.

(** Equality for [sigT] *)
Section sigT2.
  (* We make [sigT_of_sigT2] a coercion so we can use [projT1], [projT2] on [sigT2] *)
  Local Coercion sigT_of_sigT2 : sigT2 >-> sigT.
  Local Unset Implicit Arguments.
  (** Projecting an equality of a pair to equality of the first components *)
  Definition sigT_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : u = v :> { a : A & P a }
    := f_equal _ p.
  Definition projT1_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : projT1 u = projT1 v
    := projT1_eq (sigT_of_sigT2_eq p).

  (** Projecting an equality of a pair to equality of the second components *)
  Definition projT2_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : rew projT1_of_sigT2_eq p in projT2 u = projT2 v
    := rew dependent p in eq_refl.

  (** Projecting an equality of a pair to equality of the third components *)
  Definition projT3_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
    : rew projT1_of_sigT2_eq p in projT3 u = projT3 v
    := rew dependent p in eq_refl.

  (** Equality of [sigT2] is itself a [sigT2] (forwards-reasoning version) *)
  Definition eq_existT2_uncurried {A : Type} {P Q : A -> Type}
             {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1}
             (pqr : { p : u1 = v1
                    & rew p in u2 = v2 & rew p in u3 = v3 })
    : existT2 _ _ u1 u2 u3 = existT2 _ _ v1 v2 v3.
  Proof.
    destruct pqr as [p q r].
    destruct r, q, p; simpl.
    reflexivity.
  Defined.

  (** Equality of [sigT2] is itself a [sigT2] (backwards-reasoning version) *)
  Definition eq_sigT2_uncurried {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a })
             (pqr : { p : projT1 u = projT1 v
                    & rew p in projT2 u = projT2 v & rew p in projT3 u = projT3 v })
    : u = v.
  Proof.
    destruct u as [u1 u2 u3], v as [v1 v2 v3]; simpl in *.
    apply eq_existT2_uncurried; exact pqr.
  Defined.

  (** Curried version of proving equality of sigma types *)
  Definition eq_sigT2 {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a })
             (p : projT1 u = projT1 v)
             (q : rew p in projT2 u = projT2 v)
             (r : rew p in projT3 u = projT3 v)
    : u = v
    := eq_sigT2_uncurried u v (existT2 _ _ p q r).

  (** Equality of [sigT2] when the second property is an hProp *)
  Definition eq_sigT2_hprop {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A & P a & Q a })
             (p : u = v :> { a : A & P a })
    : u = v
    := eq_sigT2 u v (projT1_eq p) (projT2_eq p) (Q_hprop _ _ _).

  (** Equivalence of equality of [sigT2] with a [sigT2] of equality *)
  (** We could actually prove an isomorphism here, and not just [<->],
      but for simplicity, we don't. *)
  Definition eq_sigT2_uncurried_iff {A P Q}
             (u v : { a : A & P a & Q a })
    : u = v
      <-> { p : projT1 u = projT1 v
          & rew p in projT2 u = projT2 v & rew p in projT3 u = projT3 v }.
  Proof.
    split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT2_uncurried ].
  Defined.

  (** Induction principle for [@eq (sigT2 _ _)] *)
  Definition eq_sigT2_rect {A P Q} {u v : { a : A & P a & Q a }} (R : u = v -> Type)
             (f : forall p q r, R (eq_sigT2 u v p q r))
    : forall p, R p.
  Proof.
    intro p.
    specialize (f (projT1_of_sigT2_eq p) (projT2_of_sigT2_eq p) (projT3_eq p)).
    destruct u, p; exact f.
  Defined.
  Definition eq_sigT2_rec {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Set) := eq_sigT2_rect R.
  Definition eq_sigT2_ind {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Prop) := eq_sigT2_rec R.

  (** Equivalence of equality of [sigT2] involving hProps with equality of the first components *)
  Definition eq_sigT2_hprop_iff {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A & P a & Q a })
    : u = v <-> (u = v :> { a : A & P a })
    := conj (fun p => f_equal (@sigT_of_sigT2 _ _ _) p) (eq_sigT2_hprop Q_hprop u v).

  (** Non-dependent classification of equality of [sigT] *)
  Definition eq_sigT2_nondep {A B C : Type} (u v : { a : A & B & C })
             (p : projT1 u = projT1 v) (q : projT2 u = projT2 v) (r : projT3 u = projT3 v)
    : u = v
    := @eq_sigT2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r).

  (** Classification of transporting across an equality of [sigT2]s *)
  Lemma rew_sigT2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop)
        (u : { p : P x & Q x p & R x p })
        {y} (H : x = y)
    : rew [fun a => { p : P a & Q a p & R a p }] H in u
      = existT2
          (Q y)
          (R y)
          (rew H in projT1 u)
          (rew dependent H in projT2 u)
          (rew dependent H in projT3 u).
  Proof.
    destruct H, u; reflexivity.
  Defined.
End sigT2.

(** Equality for [sig2] *)
Section sig2.
  (* We make [sig_of_sig2] a coercion so we can use [proj1], [proj2] on [sig2] *)
  Local Coercion sig_of_sig2 : sig2 >-> sig.
  Local Unset Implicit Arguments.
  (** Projecting an equality of a pair to equality of the first components *)
  Definition sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : u = v :> { a : A | P a }
    := f_equal _ p.
  Definition proj1_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : proj1_sig u = proj1_sig v
    := proj1_sig_eq (sig_of_sig2_eq p).

  (** Projecting an equality of a pair to equality of the second components *)
  Definition proj2_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : rew proj1_sig_of_sig2_eq p in proj2_sig u = proj2_sig v
    := rew dependent p in eq_refl.

  (** Projecting an equality of a pair to equality of the third components *)
  Definition proj3_sig_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
    : rew proj1_sig_of_sig2_eq p in proj3_sig u = proj3_sig v
    := rew dependent p in eq_refl.

  (** Equality of [sig2] is itself a [sig2] (fowards-reasoning version) *)
  Definition eq_exist2_uncurried {A} {P Q : A -> Prop}
             {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1}
             (pqr : { p : u1 = v1
                    | rew p in u2 = v2 & rew p in u3 = v3 })
    : exist2 _ _ u1 u2 u3 = exist2 _ _ v1 v2 v3.
  Proof.
    destruct pqr as [p q r].
    destruct r, q, p; simpl.
    reflexivity.
  Defined.

  (** Equality of [sig2] is itself a [sig2] (backwards-reasoning version) *)
  Definition eq_sig2_uncurried {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a })
             (pqr : { p : proj1_sig u = proj1_sig v
                    | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v })
    : u = v.
  Proof.
    destruct u as [u1 u2 u3], v as [v1 v2 v3]; simpl in *.
    apply eq_exist2_uncurried; exact pqr.
  Defined.

  (** Curried version of proving equality of sigma types *)
  Definition eq_sig2 {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a })
             (p : proj1_sig u = proj1_sig v)
             (q : rew p in proj2_sig u = proj2_sig v)
             (r : rew p in proj3_sig u = proj3_sig v)
    : u = v
    := eq_sig2_uncurried u v (exist2 _ _ p q r).

  (** Equality of [sig2] when the second property is an hProp *)
  Definition eq_sig2_hprop {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A | P a & Q a })
             (p : u = v :> { a : A | P a })
    : u = v
    := eq_sig2 u v (proj1_sig_eq p) (proj2_sig_eq p) (Q_hprop _ _ _).

  (** Equivalence of equality of [sig2] with a [sig2] of equality *)
  (** We could actually prove an isomorphism here, and not just [<->],
      but for simplicity, we don't. *)
  Definition eq_sig2_uncurried_iff {A P Q}
             (u v : { a : A | P a & Q a })
    : u = v
      <-> { p : proj1_sig u = proj1_sig v
          | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v }.
  Proof.
    split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig2_uncurried ].
  Defined.

  (** Induction principle for [@eq (sig2 _ _)] *)
  Definition eq_sig2_rect {A P Q} {u v : { a : A | P a & Q a }} (R : u = v -> Type)
             (f : forall p q r, R (eq_sig2 u v p q r))
    : forall p, R p.
  Proof.
    intro p.
    specialize (f (proj1_sig_of_sig2_eq p) (proj2_sig_of_sig2_eq p) (proj3_sig_eq p)).
    destruct u, p; exact f.
  Defined.
  Definition eq_sig2_rec {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Set) := eq_sig2_rect R.
  Definition eq_sig2_ind {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Prop) := eq_sig2_rec R.

  (** Equivalence of equality of [sig2] involving hProps with equality of the first components *)
  Definition eq_sig2_hprop_iff {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q)
             (u v : { a : A | P a & Q a })
    : u = v <-> (u = v :> { a : A | P a })
    := conj (fun p => f_equal (@sig_of_sig2 _ _ _) p) (eq_sig2_hprop Q_hprop u v).

  (** Non-dependent classification of equality of [sig] *)
  Definition eq_sig2_nondep {A} {B C : Prop} (u v : @sig2 A (fun _ => B) (fun _ => C))
             (p : proj1_sig u = proj1_sig v) (q : proj2_sig u = proj2_sig v) (r : proj3_sig u = proj3_sig v)
    : u = v
    := @eq_sig2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r).

  (** Classification of transporting across an equality of [sig2]s *)
  Lemma rew_sig2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop)
        (u : { p : P x | Q x p & R x p })
        {y} (H : x = y)
    : rew [fun a => { p : P a | Q a p & R a p }] H in u
      = exist2
          (Q y)
          (R y)
          (rew H in proj1_sig u)
          (rew dependent H in proj2_sig u)
          (rew dependent H in proj3_sig u).
  Proof.
    destruct H, u; reflexivity.
  Defined.
End sig2.


(** [sumbool] is a boolean type equipped with the justification of
    their value *)

Inductive sumbool (A B:Prop) : Set :=
  | left : A -> {A} + {B}
  | right : B -> {A} + {B}
 where "{ A } + { B }" := (sumbool A B) : type_scope.

Add Printing If sumbool.

Arguments left {A B} _, [A] B _.
Arguments right {A B} _ , A [B] _.

(** [sumor] is an option type equipped with the justification of why
    it may not be a regular value *)

Inductive sumor (A:Type) (B:Prop) : Type :=
  | inleft : A -> A + {B}
  | inright : B -> A + {B}
 where "A + { B }" := (sumor A B) : type_scope.

Add Printing If sumor.

Arguments inleft {A B} _ , [A] B _.
Arguments inright {A B} _ , A [B] _.

(* Unset Universe Polymorphism. *)

(** Various forms of the axiom of choice for specifications *)

Section Choice_lemmas.

  Variables S S' : Set.
  Variable R : S -> S' -> Prop.
  Variable R' : S -> S' -> Set.
  Variables R1 R2 : S -> Prop.

  Lemma Choice :
   (forall x:S, {y:S' | R x y}) -> {f:S -> S' | forall z:S, R z (f z)}.
  Proof.
   intro H.
   exists (fun z => proj1_sig (H z)).
   intro z; destruct (H z); assumption.
  Defined.

  Lemma Choice2 :
   (forall x:S, {y:S' & R' x y}) -> {f:S -> S' & forall z:S, R' z (f z)}.
  Proof.
    intro H.
    exists (fun z => projT1 (H z)).
    intro z; destruct (H z); assumption.
  Defined.

  Lemma bool_choice :
   (forall x:S, {R1 x} + {R2 x}) ->
     {f:S -> bool | forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.
  Proof.
    intro H.
    exists (fun z:S => if H z then true else false).
    intro z; destruct (H z); auto.
  Defined.

End Choice_lemmas.

Section Dependent_choice_lemmas.

  Variables X : Set.
  Variable R : X -> X -> Prop.

  Lemma dependent_choice :
    (forall x:X, {y | R x y}) ->
    forall x0, {f : nat -> X | f O = x0 /\ forall n, R (f n) (f (S n))}.
  Proof.
    intros H x0.
    set (f:=fix f n := match n with O => x0 | S n' => proj1_sig (H (f n')) end).
    exists f.
    split. reflexivity.
    induction n; simpl; apply proj2_sig.
  Defined.

End Dependent_choice_lemmas.


 (** A result of type [(Exc A)] is either a normal value of type [A] or
     an [error] :

     [Inductive Exc [A:Type] : Type := value : A->(Exc A) | error : (Exc A)].

     It is implemented using the option type. *)
Section Exc.
  Variable A : Type.

  Definition Exc := option A.
  Definition value := @Some A.
  Definition error := @None A.
End Exc.
Arguments error {A}.

Definition except := False_rec. (* for compatibility with previous versions *)

Arguments except [P] _.

Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Proof.
  intros A C h1 h2.
  apply False_rec.
  apply (h2 h1).
Defined.

Hint Resolve left right inleft inright: core.
Hint Resolve exist exist2 existT existT2: core.

(* Compatibility *)

Notation sigS := sigT (compat "8.7").
Notation existS := existT (compat "8.7").
Notation sigS_rect := sigT_rect (compat "8.7").
Notation sigS_rec := sigT_rec (compat "8.7").
Notation sigS_ind := sigT_ind (compat "8.7").
Notation projS1 := projT1 (compat "8.7").
Notation projS2 := projT2 (compat "8.7").

Notation sigS2 := sigT2 (compat "8.7").
Notation existS2 := existT2 (compat "8.7").
Notation sigS2_rect := sigT2_rect (compat "8.7").
Notation sigS2_rec := sigT2_rec (compat "8.7").
Notation sigS2_ind := sigT2_ind (compat "8.7").