summaryrefslogtreecommitdiff
path: root/theories/Init/Logic.v
blob: cbf8d7a7f1b14e472c99a218bccf27e4b45ea48f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Logic.v 8642 2006-03-17 10:09:02Z notin $ i*)

Set Implicit Arguments.

Require Import Notations.

(** *** Propositional connectives *)

(** [True] is the always true proposition *)
Inductive True : Prop :=
    I : True. 

(** [False] is the always false proposition *)
Inductive False : Prop :=. 

(** [not A], written [~A], is the negation of [A] *)
Definition not (A:Prop) := A -> False.

Notation "~ x" := (not x) : type_scope.

Hint Unfold not: core.

  (** [and A B], written [A /\ B], is the conjunction of [A] and [B]

      [conj p q] is a proof of [A /\ B] as soon as 
      [p] is a proof of [A] and [q] a proof of [B]

      [proj1] and [proj2] are first and second projections of a conjunction *)

Inductive and (A B:Prop) : Prop :=
    conj : A -> B -> A /\ B 

where "A /\ B" := (and A B) : type_scope.

Section Conjunction.

  Variables A B : Prop.

  Theorem proj1 : A /\ B -> A.
  Proof.
  destruct 1; trivial.
  Qed.

  Theorem proj2 : A /\ B -> B.
  Proof.
  destruct 1; trivial.
  Qed.

End Conjunction.

(** [or A B], written [A \/ B], is the disjunction of [A] and [B] *)

Inductive or (A B:Prop) : Prop :=
  | or_introl : A -> A \/ B
  | or_intror : B -> A \/ B 

where "A \/ B" := (or A B) : type_scope.

(** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *)

Definition iff (A B:Prop) := (A -> B) /\ (B -> A).

Notation "A <-> B" := (iff A B) : type_scope.

Section Equivalence.

Theorem iff_refl : forall A:Prop, A <-> A.
  Proof.
    split; auto.
  Qed.

Theorem iff_trans : forall A B C:Prop, (A <-> B) -> (B <-> C) -> (A <-> C).
  Proof.
    intros A B C [H1 H2] [H3 H4]; split; auto.
  Qed.

Theorem iff_sym : forall A B:Prop, (A <-> B) -> (B <-> A).
  Proof.
    intros A B [H1 H2]; split; auto.
  Qed.

End Equivalence.

(** [(IF_then_else P Q R)], written [IF P then Q else R] denotes
    either [P] and [Q], or [~P] and [Q] *)

Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.

Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
  (at level 200, right associativity) : type_scope.

(** *** First-order quantifiers *)

(** [ex P], or simply [exists x, P x], or also [exists x:A, P x],
    expresses the existence of an [x] of some type [A] in [Set] which
    satisfies the predicate [P].  This is existential quantification.

    [ex2 P Q], or simply [exists2 x, P x & Q x], or also 
    [exists2 x:A, P x & Q x], expresses the existence of an [x] of
    type [A] which satisfies both predicates [P] and [Q].

    Universal quantification is primitively written [forall x:A, Q]. By
    symmetry with existential quantification, the construction [all P]
    is provided too.
*)

(* Remark: [exists x, Q] denotes [ex (fun x => Q)] so that [exists x,
   P x] is in fact equivalent to [ex (fun x => P x)] which may be not
   convertible to [ex P] if [P] is not itself an abstraction *)


Inductive ex (A:Type) (P:A -> Prop) : Prop :=
    ex_intro : forall x:A, P x -> ex (A:=A) P.

Inductive ex2 (A:Type) (P Q:A -> Prop) : Prop :=
    ex_intro2 : forall x:A, P x -> Q x -> ex2 (A:=A) P Q.

Definition all (A:Type) (P:A -> Prop) := forall x:A, P x. 

(* Rule order is important to give printing priority to fully typed exists *)

Notation "'exists' x , p" := (ex (fun x => p))
  (at level 200, x ident, right associativity) : type_scope.
Notation "'exists' x : t , p" := (ex (fun x:t => p))
  (at level 200, x ident, right associativity, 
   format "'[' 'exists'  '/  ' x  :  t ,  '/  ' p ']'")
  : type_scope.

Notation "'exists2' x , p & q" := (ex2 (fun x => p) (fun x => q))
  (at level 200, x ident, p at level 200, right associativity) : type_scope.
Notation "'exists2' x : t , p & q" := (ex2 (fun x:t => p) (fun x:t => q))
  (at level 200, x ident, t at level 200, p at level 200, right associativity,
   format "'[' 'exists2'  '/  ' x  :  t ,  '/  ' '[' p  &  '/' q ']' ']'")
  : type_scope.

(** Derived rules for universal quantification *)

Section universal_quantification.

  Variable A : Type.
  Variable P : A -> Prop.

  Theorem inst : forall x:A, all (fun x => P x) -> P x.
  Proof.
  unfold all in |- *; auto.
  Qed.

  Theorem gen : forall (B:Prop) (f:forall y:A, B -> P y), B -> all P.
  Proof.
  red in |- *; auto.
  Qed.

End universal_quantification.

(** *** Equality *)

(** [eq x y], or simply [x=y] expresses the equality of [x] and
    [y]. Both [x] and [y] must belong to the same type [A].
    The definition is inductive and states the reflexivity of the equality.
    The others properties (symmetry, transitivity, replacement of 
    equals by equals) are proved below. The type of [x] and [y] can be
    made explicit using the notation [x = y :> A]. This is Leibniz equality
    as it expresses that [x] and [y] are equal iff every property on
    [A] which is true of [x] is also true of [y] *)

Inductive eq (A:Type) (x:A) : A -> Prop :=
    refl_equal : x = x :>A 

where "x = y :> A" := (@eq A x y) : type_scope.

Notation "x = y" := (x = y :>_) : type_scope.
Notation "x <> y  :> T" := (~ x = y :>T) : type_scope.
Notation "x <> y" := (x <> y :>_) : type_scope.

Implicit Arguments eq_ind [A].
Implicit Arguments eq_rec [A].
Implicit Arguments eq_rect [A].

Hint Resolve I conj or_introl or_intror refl_equal: core v62.
Hint Resolve ex_intro ex_intro2: core v62.

Section Logic_lemmas.

  Theorem absurd : forall A C:Prop, A -> ~ A -> C.
  Proof.
    unfold not in |- *; intros A C h1 h2.
    destruct (h2 h1).
  Qed.

  Section equality.
    Variables A B : Type.
    Variable f : A -> B.
    Variables x y z : A.

    Theorem sym_eq : x = y -> y = x.
    Proof.
     destruct 1; trivial.
    Defined.
    Opaque sym_eq.

    Theorem trans_eq : x = y -> y = z -> x = z.
    Proof.
     destruct 2; trivial.
    Defined.
    Opaque trans_eq.

    Theorem f_equal : x = y -> f x = f y.
    Proof.
     destruct 1; trivial.
    Defined.
    Opaque f_equal.

    Theorem sym_not_eq : x <> y -> y <> x.
    Proof.
     red in |- *; intros h1 h2; apply h1; destruct h2; trivial.
    Qed.

    Definition sym_equal := sym_eq.
    Definition sym_not_equal := sym_not_eq.
    Definition trans_equal := trans_eq.

  End equality.

  Definition eq_ind_r :
    forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y.
   intros A x P H y H0; elim sym_eq with (1 := H0); assumption.
  Defined.

  Definition eq_rec_r :
    forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y.
    intros A x P H y H0; elim sym_eq with (1 := H0); assumption.
  Defined.

  Definition eq_rect_r :
    forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y.
    intros A x P H y H0; elim sym_eq with (1 := H0); assumption.
  Defined.
End Logic_lemmas.

Theorem f_equal2 :
 forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1) 
   (x2 y2:A2), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2.
Proof.
  destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal3 :
 forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1) 
   (x2 y2:A2) (x3 y3:A3),
   x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
Proof.
  destruct 1; destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal4 :
 forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B) 
   (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4),
   x1 = y1 -> x2 = y2 -> x3 = y3 -> x4 = y4 -> f x1 x2 x3 x4 = f y1 y2 y3 y4.
Proof.
  destruct 1; destruct 1; destruct 1; destruct 1; reflexivity.
Qed.

Theorem f_equal5 :
 forall (A1 A2 A3 A4 A5 B:Type) (f:A1 -> A2 -> A3 -> A4 -> A5 -> B)
   (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4) (x5 y5:A5),
   x1 = y1 ->
   x2 = y2 ->
   x3 = y3 -> x4 = y4 -> x5 = y5 -> f x1 x2 x3 x4 x5 = f y1 y2 y3 y4 y5.
Proof.
  destruct 1; destruct 1; destruct 1; destruct 1; destruct 1; reflexivity.
Qed.

Hint Immediate sym_eq sym_not_eq: core v62.

(** Other notations *)

Notation "'exists' ! x , P" := 
  (exists x',  (fun x => P) x' /\ forall x'', (fun x => P) x'' -> x' = x'')
  (at level 200, x ident, right associativity,
   format "'[' 'exists' !  '/  ' x ,  '/  ' P ']'") : type_scope.
Notation "'exists' ! x : A , P" := 
  (exists x' : A,  (fun x => P) x' /\ forall x'':A, (fun x => P) x'' -> x' = x'')
  (at level 200, x ident, right associativity,
   format "'[' 'exists' !  '/  ' x  :  A ,  '/  ' P ']'") : type_scope.