summaryrefslogtreecommitdiff
path: root/theories/FSets/OrderedTypeEx.v
blob: 0317139662b236dd7163244f88d01dcb018d4fe7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* Finite sets library.  
 * Authors: Pierre Letouzey and Jean-Christophe Filliâtre 
 * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
 *              91405 Orsay, France *)

(* $Id: OrderedTypeEx.v 10739 2008-04-01 14:45:20Z herbelin $ *)

Require Import OrderedType.
Require Import ZArith.
Require Import Omega.
Require Import NArith Ndec.
Require Import Compare_dec.

(** * Examples of Ordered Type structures. *)

(** First, a particular case of [OrderedType] where 
    the equality is the usual one of Coq. *)

Module Type UsualOrderedType.
 Parameter Inline t : Type.
 Definition eq := @eq t.
 Parameter Inline lt : t -> t -> Prop.
 Definition eq_refl := @refl_equal t.
 Definition eq_sym := @sym_eq t.
 Definition eq_trans := @trans_eq t.
 Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
 Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
 Parameter compare : forall x y : t, Compare lt eq x y.
End UsualOrderedType.

(** a [UsualOrderedType] is in particular an [OrderedType]. *)

Module UOT_to_OT (U:UsualOrderedType) <: OrderedType := U.

(** [nat] is an ordered type with respect to the usual order on natural numbers. *)

Module Nat_as_OT <: UsualOrderedType.

  Definition t := nat.

  Definition eq := @eq nat.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt := lt.

  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof. unfold lt in |- *; intros; apply lt_trans with y; auto. Qed.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof. unfold lt, eq in |- *; intros; omega. Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
    intros; case (lt_eq_lt_dec x y).
    simple destruct 1; intro.
    constructor 1; auto.
    constructor 2; auto.
    intro; constructor 3; auto.
  Defined.

End Nat_as_OT.


(** [Z] is an ordered type with respect to the usual order on integers. *)

Open Local Scope Z_scope.

Module Z_as_OT <: UsualOrderedType.

  Definition t := Z.
  Definition eq := @eq Z. 
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt (x y:Z) := (x<y).

  Lemma lt_trans : forall x y z, x<y -> y<z -> x<z.
  Proof. intros; omega. Qed.

  Lemma lt_not_eq : forall x y, x<y -> ~ x=y.
  Proof. intros; omega. Qed.

  Definition compare : forall x y, Compare lt eq x y.
  Proof.
    intros x y; case_eq (x ?= y); intros.
    apply EQ; unfold eq; apply Zcompare_Eq_eq; auto.
    apply LT; unfold lt, Zlt; auto.
    apply GT; unfold lt, Zlt; rewrite <- Zcompare_Gt_Lt_antisym; auto.
  Defined.

End Z_as_OT.

(** [positive] is an ordered type with respect to the usual order on natural numbers. *) 

Open Local Scope positive_scope.

Module Positive_as_OT <: UsualOrderedType.
  Definition t:=positive.
  Definition eq:=@eq positive.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt p q:= (p ?= q) Eq = Lt.
 
  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof. 
  unfold lt; intros x y z.
  change ((Zpos x < Zpos y)%Z -> (Zpos y < Zpos z)%Z -> (Zpos x < Zpos z)%Z).
  omega.
  Qed.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
  intros; intro.
  rewrite H0 in H.
  unfold lt in H.
  rewrite Pcompare_refl in H; discriminate.
  Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
  intros x y.
  case_eq ((x ?= y) Eq); intros.
  apply EQ; apply Pcompare_Eq_eq; auto.
  apply LT; unfold lt; auto.
  apply GT; unfold lt.
  replace Eq with (CompOpp Eq); auto.
  rewrite <- Pcompare_antisym; rewrite H; auto.
  Defined.

End Positive_as_OT.


(** [N] is an ordered type with respect to the usual order on natural numbers. *) 

Open Local Scope positive_scope.

Module N_as_OT <: UsualOrderedType.
  Definition t:=N.
  Definition eq:=@eq N.
  Definition eq_refl := @refl_equal t.
  Definition eq_sym := @sym_eq t.
  Definition eq_trans := @trans_eq t.

  Definition lt p q:= Nleb q p = false.
 
  Definition lt_trans := Nltb_trans.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
  intros; intro.
  rewrite H0 in H.
  unfold lt in H.
  rewrite Nleb_refl in H; discriminate.
  Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
  intros x y.
  case_eq ((x ?= y)%N); intros.
  apply EQ; apply Ncompare_Eq_eq; auto.
  apply LT; unfold lt; auto.
   generalize (Nleb_Nle y x).
   unfold Nle; rewrite <- Ncompare_antisym.
   destruct (x ?= y)%N; simpl; try discriminate.
   clear H; intros H.
   destruct (Nleb y x); intuition.
  apply GT; unfold lt.
   generalize (Nleb_Nle x y).
   unfold Nle; destruct (x ?= y)%N; simpl; try discriminate.
   destruct (Nleb x y); intuition.
  Defined.

End N_as_OT.


(** From two ordered types, we can build a new OrderedType 
   over their cartesian product, using the lexicographic order. *)

Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
 Module MO1:=OrderedTypeFacts(O1).
 Module MO2:=OrderedTypeFacts(O2).

 Definition t := prod O1.t O2.t.
  
 Definition eq x y := O1.eq (fst x) (fst y) /\ O2.eq (snd x) (snd y).

 Definition lt x y := 
    O1.lt (fst x) (fst y) \/ 
    (O1.eq (fst x) (fst y) /\ O2.lt (snd x) (snd y)).

 Lemma eq_refl : forall x : t, eq x x.
 Proof. 
 intros (x1,x2); red; simpl; auto.
 Qed.

 Lemma eq_sym : forall x y : t, eq x y -> eq y x.
 Proof. 
 intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
 Qed.

 Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
 Proof. 
 intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto.
 Qed.
 
 Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. 
 Proof.
 intros (x1,x2) (y1,y2) (z1,z2); unfold eq, lt; simpl; intuition.
 left; eauto.
 left; eapply MO1.lt_eq; eauto.
 left; eapply MO1.eq_lt; eauto.
 right; split; eauto.
 Qed.

 Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
 Proof.
 intros (x1,x2) (y1,y2); unfold eq, lt; simpl; intuition.
 apply (O1.lt_not_eq H0 H1).
 apply (O2.lt_not_eq H3 H2).
 Qed.

 Definition compare : forall x y : t, Compare lt eq x y.
 intros (x1,x2) (y1,y2).
 destruct (O1.compare x1 y1).
 apply LT; unfold lt; auto.
 destruct (O2.compare x2 y2).
 apply LT; unfold lt; auto.
 apply EQ; unfold eq; auto.
 apply GT; unfold lt; auto.
 apply GT; unfold lt; auto.
 Defined.

End PairOrderedType.