summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetBridge.v
blob: 08985cfcc3698c0c1dbf704a4d9544f41a574ac9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id: FSetBridge.v 8834 2006-05-20 00:41:35Z letouzey $ *)

(** * Finite sets library *)

(** This module implements bridges (as functors) from dependent
    to/from non-dependent set signature. *)

Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
Set Firstorder Depth 2.

(** * From non-dependent signature [S] to dependent signature [Sdep]. *)

Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
  Import M.

  Module ME := OrderedTypeFacts E.
   
  Definition empty : {s : t | Empty s}.
  Proof. 
    exists empty; auto.
  Qed.

  Definition is_empty : forall s : t, {Empty s} + {~ Empty s}.
  Proof. 
    intros; generalize (is_empty_1 (s:=s)) (is_empty_2 (s:=s)).
    case (is_empty s); intuition.
  Qed.


  Definition mem : forall (x : elt) (s : t), {In x s} + {~ In x s}.
  Proof. 
    intros; generalize (mem_1 (s:=s) (x:=x)) (mem_2 (s:=s) (x:=x)).
    case (mem x s); intuition.
  Qed.
 
  Definition Add (x : elt) (s s' : t) :=
    forall y : elt, In y s' <-> E.eq x y \/ In y s.
 
  Definition add : forall (x : elt) (s : t), {s' : t | Add x s s'}.
  Proof.
    intros; exists (add x s); auto.
    unfold Add in |- *; intuition.
    elim (ME.eq_dec x y); auto.
    intros; right. 
    eapply add_3; eauto.
  Qed. 
 
  Definition singleton :
    forall x : elt, {s : t | forall y : elt, In y s <-> E.eq x y}.
  Proof. 
    intros; exists (singleton x); intuition.
  Qed.
 
  Definition remove :
    forall (x : elt) (s : t),
    {s' : t | forall y : elt, In y s' <-> ~ E.eq x y /\ In y s}.
  Proof.
    intros; exists (remove x s); intuition.
    absurd (In x (remove x s)); auto.
    apply In_1 with y; auto. 
    elim (ME.eq_dec x y); intros; auto.
    absurd (In x (remove x s)); auto.
    apply In_1 with y; auto. 
    eauto.
  Qed.

  Definition union :
    forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s \/ In x s'}.
  Proof.
    intros; exists (union s s'); intuition.
  Qed.    

  Definition inter :
    forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ In x s'}.
  Proof. 
    intros; exists (inter s s'); intuition; eauto.
  Qed.

  Definition diff :
    forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ ~ In x s'}.
  Proof. 
    intros; exists (diff s s'); intuition; eauto. 
    absurd (In x s'); eauto. 
  Qed. 
 
  Definition equal : forall s s' : t, {Equal s s'} + {~ Equal s s'}.
  Proof. 
    intros. 
    generalize (equal_1 (s:=s) (s':=s')) (equal_2 (s:=s) (s':=s')).
    case (equal s s'); intuition.
  Qed.

  Definition subset : forall s s' : t, {Subset s s'} + {~Subset s s'}.
  Proof. 
    intros. 
    generalize (subset_1 (s:=s) (s':=s')) (subset_2 (s:=s) (s':=s')).
    case (subset s s'); intuition.
  Qed.   

  Definition elements :
    forall s : t,
    {l : list elt | sort E.lt l /\ (forall x : elt, In x s <-> InA E.eq x l)}.
   Proof.
     intros; exists (elements s); intuition.   
   Defined. 

  Definition fold :
    forall (A : Set) (f : elt -> A -> A) (s : t) (i : A),
    {r : A |   let (l,_) := elements s in 
                  r = fold_left (fun a e => f e a) l i}.
  Proof. 
  intros; exists (fold (A:=A) f s i); exact (fold_1 s i f).
  Qed.

  Definition cardinal :
      forall s : t,
      {r : nat | let (l,_) := elements s in r = length l }.
  Proof.
    intros; exists (cardinal s); exact (cardinal_1 s).
  Qed.    

  Definition fdec (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
    (x : elt) := if Pdec x then true else false. 

  Lemma compat_P_aux :
   forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}),
   compat_P E.eq P -> compat_bool E.eq (fdec Pdec).
  Proof.
    unfold compat_P, compat_bool, fdec in |- *; intros.
    generalize (E.eq_sym H0); case (Pdec x); case (Pdec y); firstorder.
  Qed.

  Hint Resolve compat_P_aux.

  Definition filter :
    forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
    {s' : t | compat_P E.eq P -> forall x : elt, In x s' <-> In x s /\ P x}.
  Proof.
    intros. 
    exists (filter (fdec Pdec) s).
    intro H; assert (compat_bool E.eq (fdec Pdec)); auto.
    intuition.
    eauto.
    generalize (filter_2 H0 H1).
    unfold fdec in |- *.
    case (Pdec x); intuition.
    inversion H2.
    apply filter_3; auto.
    unfold fdec in |- *; simpl in |- *.
    case (Pdec x); intuition.
  Qed.

  Definition for_all :
    forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
    {compat_P E.eq P -> For_all P s} + {compat_P E.eq P -> ~ For_all P s}.
  Proof. 
    intros. 
    generalize (for_all_1 (s:=s) (f:=fdec Pdec))
     (for_all_2 (s:=s) (f:=fdec Pdec)).
    case (for_all (fdec Pdec) s); unfold For_all in |- *; [ left | right ];
     intros.
    assert (compat_bool E.eq (fdec Pdec)); auto.
    generalize (H0 H3 (refl_equal _) _ H2).
    unfold fdec in |- *. 
    case (Pdec x); intuition.
    inversion H4.
    intuition.    
    absurd (false = true); [ auto with bool | apply H; auto ].
    intro.
    unfold fdec in |- *. 
    case (Pdec x); intuition.
  Qed.

  Definition exists_ :
    forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
    {compat_P E.eq P -> Exists P s} + {compat_P E.eq P -> ~ Exists P s}.
  Proof. 
    intros. 
    generalize (exists_1 (s:=s) (f:=fdec Pdec))
     (exists_2 (s:=s) (f:=fdec Pdec)).
    case (exists_ (fdec Pdec) s); unfold Exists in |- *; [ left | right ];
     intros.
    elim H0; auto; intros.
    exists x; intuition.
    generalize H4.
    unfold fdec in |- *. 
    case (Pdec x); intuition.
    inversion H2.
    intuition. 
    elim H2; intros.    
    absurd (false = true); [ auto with bool | apply H; auto ].
    exists x; intuition.
    unfold fdec in |- *. 
    case (Pdec x); intuition.
  Qed.

  Definition partition :
    forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
    {partition : t * t |
    let (s1, s2) := partition in
    compat_P E.eq P ->
    For_all P s1 /\
    For_all (fun x => ~ P x) s2 /\
    (forall x : elt, In x s <-> In x s1 \/ In x s2)}.
  Proof.
    intros.
    exists (partition (fdec Pdec) s).
    generalize (partition_1 s (f:=fdec Pdec)) (partition_2 s (f:=fdec Pdec)).
    case (partition (fdec Pdec) s).
    intros s1 s2; simpl in |- *.
    intros; assert (compat_bool E.eq (fdec Pdec)); auto.
    intros; assert (compat_bool E.eq (fun x => negb (fdec Pdec x))).
    generalize H2; unfold compat_bool in |- *; intuition;
     apply (f_equal negb); auto.
    intuition.
    generalize H4; unfold For_all, Equal in |- *; intuition.
    elim (H0 x); intros.
    assert (fdec Pdec x = true).
     eauto.      
    generalize H8; unfold fdec in |- *; case (Pdec x); intuition.
    inversion H9.
    generalize H; unfold For_all, Equal in |- *; intuition.
    elim (H0 x); intros.
    cut ((fun x => negb (fdec Pdec x)) x = true). 
    unfold fdec in |- *; case (Pdec x); intuition.
      change ((fun x => negb (fdec Pdec x)) x = true) in |- *.
      apply (filter_2 (s:=s) (x:=x)); auto.
    set (b := fdec Pdec x) in *; generalize (refl_equal b);
     pattern b at -1 in |- *; case b; unfold b in |- *; 
     [ left | right ].
    elim (H4 x); intros _ B; apply B; auto.
    elim (H x); intros _ B; apply B; auto.
    apply filter_3; auto.
    rewrite H5; auto.
    eapply (filter_1 (s:=s) (x:=x) H2); elim (H4 x); intros B _; apply B;
     auto.
    eapply (filter_1 (s:=s) (x:=x) H3); elim (H x); intros B _; apply B; auto.
  Qed. 

  Definition choose : forall s : t, {x : elt | In x s} + {Empty s}.
  Proof.  
    intros.
    generalize (choose_1 (s:=s)) (choose_2 (s:=s)).
    case (choose s); [ left | right ]; auto.
    exists e; auto.    
  Qed.

  Definition min_elt :
    forall s : t,
    {x : elt | In x s /\ For_all (fun y => ~ E.lt y x) s} + {Empty s}.
  Proof. 
    intros;
     generalize (min_elt_1 (s:=s)) (min_elt_2 (s:=s)) (min_elt_3 (s:=s)).
    case (min_elt s); [ left | right ]; auto.    
    exists e; unfold For_all in |- *; eauto.
  Qed. 

  Definition max_elt :
    forall s : t,
    {x : elt | In x s /\ For_all (fun y => ~ E.lt x y) s} + {Empty s}.
  Proof. 
    intros;
     generalize (max_elt_1 (s:=s)) (max_elt_2 (s:=s)) (max_elt_3 (s:=s)).
    case (max_elt s); [ left | right ]; auto.    
    exists e; unfold For_all in |- *; eauto.
  Qed. 

  Module E := E. 

  Definition elt := elt.
  Definition t := t.

  Definition In := In. 
  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) (s : t) :=
    forall x : elt, In x s -> P x.
  Definition Exists (P : elt -> Prop) (s : t) :=
    exists x : elt, In x s /\ P x.
  
  Definition eq_In := In_1.

  Definition eq := Equal.
  Definition lt := lt.
  Definition eq_refl := eq_refl.
  Definition eq_sym := eq_sym.
  Definition eq_trans := eq_trans.
  Definition lt_trans := lt_trans. 
  Definition lt_not_eq := lt_not_eq.
  Definition compare := compare.

End DepOfNodep.


(** * From dependent signature [Sdep] to non-dependent signature [S]. *)

Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
  Import M.

  Module ME := OrderedTypeFacts E.

  Definition empty : t := let (s, _) := empty in s.

  Lemma empty_1 : Empty empty.
  Proof.
    unfold empty in |- *; case M.empty; auto.
  Qed.

  Definition is_empty (s : t) : bool :=
    if is_empty s then true else false.

  Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true.
  Proof.
    intros; unfold is_empty in |- *; case (M.is_empty s); auto.
  Qed.

  Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s.
  Proof.
    intro s; unfold is_empty in |- *; case (M.is_empty s); auto.
    intros; discriminate H.
  Qed.

  Definition mem (x : elt) (s : t) : bool :=
    if mem x s then true else false.

  Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true.
  Proof.
    intros; unfold mem in |- *; case (M.mem x s); auto.
  Qed.
   
  Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s.
  Proof.
    intros s x; unfold mem in |- *; case (M.mem x s); auto.
    intros; discriminate H.
  Qed.

  Definition equal (s s' : t) : bool :=
    if equal s s' then true else false.

  Lemma equal_1 : forall s s' : t, Equal s s' -> equal s s' = true.
  Proof. 
    intros; unfold equal in |- *; case M.equal; intuition.
  Qed.    
 
  Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'.
  Proof. 
    intros s s'; unfold equal in |- *; case (M.equal s s'); intuition;
     inversion H.
  Qed.
  
  Definition subset (s s' : t) : bool :=
    if subset s s' then true else false.

  Lemma subset_1 : forall s s' : t, Subset s s' -> subset s s' = true.
  Proof. 
    intros; unfold subset in |- *; case M.subset; intuition.
  Qed.    
 
  Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'.
  Proof. 
    intros s s'; unfold subset in |- *; case (M.subset s s'); intuition;
     inversion H.
  Qed.

  Definition choose (s : t) : option elt :=
    match choose s with
    | inleft (exist x _) => Some x
    | inright _ => None
    end.

  Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s.
  Proof.
    intros s x; unfold choose in |- *; case (M.choose s).
    simple destruct s0; intros; injection H; intros; subst; auto.
    intros; discriminate H.
  Qed.

  Lemma choose_2 : forall s : t, choose s = None -> Empty s.
  Proof.
    intro s; unfold choose in |- *; case (M.choose s); auto.
    simple destruct s0; intros; discriminate H.
  Qed.

  Definition elements (s : t) : list elt := let (l, _) := elements s in l. 
 
  Lemma elements_1 : forall (s : t) (x : elt), In x s -> InA E.eq x (elements s).
  Proof. 
    intros; unfold elements in |- *; case (M.elements s); firstorder.
  Qed.

  Lemma elements_2 : forall (s : t) (x : elt), InA E.eq x (elements s) -> In x s.
  Proof. 
    intros s x; unfold elements in |- *; case (M.elements s); firstorder.
  Qed.

  Lemma elements_3 : forall s : t, sort E.lt (elements s).  
  Proof. 
    intros; unfold elements in |- *; case (M.elements s); firstorder.
  Qed.

  Definition min_elt (s : t) : option elt :=
    match min_elt s with
    | inleft (exist x _) => Some x
    | inright _ => None
    end.

  Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s. 
  Proof.
    intros s x; unfold min_elt in |- *; case (M.min_elt s).
    simple destruct s0; intros; injection H; intros; subst; intuition.
    intros; discriminate H.
  Qed. 

  Lemma min_elt_2 :
   forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x. 
  Proof.
    intros s x y; unfold min_elt in |- *; case (M.min_elt s).
    unfold For_all in |- *; simple destruct s0; intros; injection H; intros;
     subst; firstorder.
    intros; discriminate H.
  Qed. 

  Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s.
  Proof.
    intros s; unfold min_elt in |- *; case (M.min_elt s); auto.
    simple destruct s0; intros; discriminate H.
  Qed. 

  Definition max_elt (s : t) : option elt :=
    match max_elt s with
    | inleft (exist x _) => Some x
    | inright _ => None
    end.

  Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s. 
  Proof.
    intros s x; unfold max_elt in |- *; case (M.max_elt s).
    simple destruct s0; intros; injection H; intros; subst; intuition.
    intros; discriminate H.
  Qed. 

  Lemma max_elt_2 :
   forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y. 
  Proof.
    intros s x y; unfold max_elt in |- *; case (M.max_elt s).
    unfold For_all in |- *; simple destruct s0; intros; injection H; intros;
     subst; firstorder.
    intros; discriminate H.
  Qed. 

  Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s.
  Proof.
    intros s; unfold max_elt in |- *; case (M.max_elt s); auto.
    simple destruct s0; intros; discriminate H.
  Qed. 

  Definition add (x : elt) (s : t) : t := let (s', _) := add x s in s'.

  Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s).
  Proof.
    intros; unfold add in |- *; case (M.add x s); unfold Add in |- *;
     firstorder.
  Qed.

  Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s).
  Proof.
    intros; unfold add in |- *; case (M.add x s); unfold Add in |- *;
     firstorder.
  Qed.

  Lemma add_3 :
   forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s.
  Proof.
    intros s x y; unfold add in |- *; case (M.add x s); unfold Add in |- *;
     firstorder.
  Qed.

  Definition remove (x : elt) (s : t) : t := let (s', _) := remove x s in s'.

  Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s).
  Proof.
    intros; unfold remove in |- *; case (M.remove x s); firstorder.
  Qed.

  Lemma remove_2 :
   forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s).
  Proof.
    intros; unfold remove in |- *; case (M.remove x s); firstorder.
  Qed.

  Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s.
  Proof.
    intros s x y; unfold remove in |- *; case (M.remove x s); firstorder.
  Qed.
  
  Definition singleton (x : elt) : t := let (s, _) := singleton x in s. 
 
  Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y. 
  Proof.
    intros x y; unfold singleton in |- *; case (M.singleton x); firstorder.
  Qed.

  Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x). 
  Proof.
    intros x y; unfold singleton in |- *; case (M.singleton x); firstorder.
  Qed.
  
  Definition union (s s' : t) : t := let (s'', _) := union s s' in s''.
 
  Lemma union_1 :
   forall (s s' : t) (x : elt), In x (union s s') -> In x s \/ In x s'.
  Proof. 
    intros s s' x; unfold union in |- *; case (M.union s s'); firstorder.
  Qed.

  Lemma union_2 : forall (s s' : t) (x : elt), In x s -> In x (union s s'). 
  Proof. 
    intros s s' x; unfold union in |- *; case (M.union s s'); firstorder.
  Qed.

  Lemma union_3 : forall (s s' : t) (x : elt), In x s' -> In x (union s s').
  Proof. 
    intros s s' x; unfold union in |- *; case (M.union s s'); firstorder.
  Qed.

  Definition inter (s s' : t) : t := let (s'', _) := inter s s' in s''.
 
  Lemma inter_1 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s.
  Proof. 
    intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder.
  Qed.

  Lemma inter_2 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s'.
  Proof. 
    intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder.
  Qed.

  Lemma inter_3 :
   forall (s s' : t) (x : elt), In x s -> In x s' -> In x (inter s s').
  Proof. 
    intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder.
  Qed.

  Definition diff (s s' : t) : t := let (s'', _) := diff s s' in s''.
 
  Lemma diff_1 : forall (s s' : t) (x : elt), In x (diff s s') -> In x s.
  Proof. 
    intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder.
  Qed.

  Lemma diff_2 : forall (s s' : t) (x : elt), In x (diff s s') -> ~ In x s'.
  Proof. 
    intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder.
  Qed.

  Lemma diff_3 :
   forall (s s' : t) (x : elt), In x s -> ~ In x s' -> In x (diff s s').
  Proof. 
    intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder.
  Qed.

  Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f.

  Lemma cardinal_1 : forall s, cardinal s = length (elements s).
  Proof.
    intros; unfold cardinal in |- *; case (M.cardinal s); unfold elements in *; 
    destruct (M.elements s); auto.
  Qed.

  Definition fold (B : Set) (f : elt -> B -> B) (i : t) 
    (s : B) : B := let (fold, _) := fold f i s in fold.

  Lemma fold_1 :
   forall (s : t) (A : Set) (i : A) (f : elt -> A -> A),
   fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Proof.
    intros; unfold fold in |- *; case (M.fold f s i); unfold elements in *; 
    destruct (M.elements s); auto.
  Qed.  

  Definition f_dec :
    forall (f : elt -> bool) (x : elt), {f x = true} + {f x <> true}.
  Proof.
    intros; case (f x); auto with bool.
  Defined. 

  Lemma compat_P_aux :
   forall f : elt -> bool,
   compat_bool E.eq f -> compat_P E.eq (fun x => f x = true).
  Proof.
     unfold compat_bool, compat_P in |- *; intros; rewrite <- H1; firstorder.
  Qed.

  Hint Resolve compat_P_aux.
    
  Definition filter (f : elt -> bool) (s : t) : t :=
    let (s', _) := filter (P:=fun x => f x = true) (f_dec f) s in s'.

  Lemma filter_1 :
   forall (s : t) (x : elt) (f : elt -> bool),
   compat_bool E.eq f -> In x (filter f s) -> In x s.
  Proof.
    intros s x f; unfold filter in |- *; case M.filter; intuition.
    generalize (i (compat_P_aux H)); firstorder.
  Qed.

  Lemma filter_2 :
   forall (s : t) (x : elt) (f : elt -> bool),
   compat_bool E.eq f -> In x (filter f s) -> f x = true. 
  Proof.
    intros s x f; unfold filter in |- *; case M.filter; intuition.
    generalize (i (compat_P_aux H)); firstorder.
  Qed.

  Lemma filter_3 :
   forall (s : t) (x : elt) (f : elt -> bool),
   compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).     
  Proof.
    intros s x f; unfold filter in |- *; case M.filter; intuition.
    generalize (i (compat_P_aux H)); firstorder.
  Qed.

  Definition for_all (f : elt -> bool) (s : t) : bool :=
    if for_all (P:=fun x => f x = true) (f_dec f) s
    then true
    else false. 

  Lemma for_all_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool E.eq f ->
   For_all (fun x => f x = true) s -> for_all f s = true.
  Proof. 
    intros s f; unfold for_all in |- *; case M.for_all; intuition; elim n;
     auto.
  Qed.
 
  Lemma for_all_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool E.eq f ->
   for_all f s = true -> For_all (fun x => f x = true) s.
  Proof. 
    intros s f; unfold for_all in |- *; case M.for_all; intuition;
     inversion H0.
  Qed.
  
  Definition exists_ (f : elt -> bool) (s : t) : bool :=
    if exists_ (P:=fun x => f x = true) (f_dec f) s
    then true
    else false. 

  Lemma exists_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
  Proof. 
    intros s f; unfold exists_ in |- *; case M.exists_; intuition; elim n;
     auto.
  Qed.
 
  Lemma exists_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
  Proof. 
    intros s f; unfold exists_ in |- *; case M.exists_; intuition;
     inversion H0.
  Qed.
     
  Definition partition (f : elt -> bool) (s : t) : 
    t * t :=
    let (p, _) := partition (P:=fun x => f x = true) (f_dec f) s in p.
  
  Lemma partition_1 :
   forall (s : t) (f : elt -> bool),
   compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
  Proof.
    intros s f; unfold partition in |- *; case M.partition. 
    intro p; case p; clear p; intros s1 s2 H C. 
    generalize (H (compat_P_aux C)); clear H; intro H.
    simpl in |- *; unfold Equal in |- *; intuition.
    apply filter_3; firstorder. 
    elim (H2 a); intros. 
    assert (In a s). 
     eapply filter_1; eauto.
    elim H3; intros; auto.
    absurd (f a = true).
    exact (H a H6).
    eapply filter_2; eauto. 
  Qed.    
    
  Lemma partition_2 :
   forall (s : t) (f : elt -> bool),
   compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Proof.
    intros s f; unfold partition in |- *; case M.partition. 
    intro p; case p; clear p; intros s1 s2 H C. 
    generalize (H (compat_P_aux C)); clear H; intro H.
    assert (D : compat_bool E.eq (fun x => negb (f x))).
    generalize C; unfold compat_bool in |- *; intros; apply (f_equal negb);
     auto.
    simpl in |- *; unfold Equal in |- *; intuition.
    apply filter_3; firstorder.
    elim (H2 a); intros. 
    assert (In a s). 
     eapply filter_1; eauto.
    elim H3; intros; auto.
    absurd (f a = true).
    intro.
    generalize (filter_2 D H1). 
    rewrite H7; intros H8; inversion H8.
    exact (H0 a H6).
  Qed. 


  Module E := E. 
  Definition elt := elt.
  Definition t := t.

  Definition In := In. 
  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Add (x : elt) (s s' : t) :=
    forall y : elt, In y s' <-> E.eq y x \/ In y s.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) (s : t) :=
    forall x : elt, In x s -> P x.
  Definition Exists (P : elt -> Prop) (s : t) :=
    exists x : elt, In x s /\ P x.

  Definition In_1 := eq_In.

  Definition eq := Equal.
  Definition lt := lt.
  Definition eq_refl := eq_refl.
  Definition eq_sym := eq_sym.
  Definition eq_trans := eq_trans.
  Definition lt_trans := lt_trans. 
  Definition lt_not_eq := lt_not_eq.
  Definition compare := compare.

End NodepOfDep.