summaryrefslogtreecommitdiff
path: root/theories/Classes/RelationPairs.v
blob: 7972c96ca6836ec0bedd2e0615081098eb9e2a2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(** * Relations over pairs *)


Require Import Relations Morphisms.

(* NB: This should be system-wide someday, but for that we need to
    fix the simpl tactic, since "simpl fst" would be refused for
    the moment.

Implicit Arguments fst [[A] [B]].
Implicit Arguments snd [[A] [B]].
Implicit Arguments pair [[A] [B]].

/NB *)

Local Notation Fst := (@fst _ _).
Local Notation Snd := (@snd _ _).

Arguments Scope relation_conjunction
 [type_scope signature_scope signature_scope].
Arguments Scope relation_equivalence
 [type_scope signature_scope signature_scope].
Arguments Scope subrelation [type_scope signature_scope signature_scope].
Arguments Scope Reflexive [type_scope signature_scope].
Arguments Scope Irreflexive [type_scope signature_scope].
Arguments Scope Symmetric [type_scope signature_scope].
Arguments Scope Transitive [type_scope signature_scope].
Arguments Scope PER [type_scope signature_scope].
Arguments Scope Equivalence [type_scope signature_scope].
Arguments Scope StrictOrder [type_scope signature_scope].

Generalizable Variables A B RA RB Ri Ro f.

(** Any function from [A] to [B] allow to obtain a relation over [A]
    out of a relation over [B]. *)

Definition RelCompFun {A B}(R:relation B)(f:A->B) : relation A :=
 fun a a' => R (f a) (f a').

Infix "@@" := RelCompFun (at level 30, right associativity) : signature_scope.

Notation "R @@1" := (R @@ Fst)%signature (at level 30) : signature_scope.
Notation "R @@2" := (R @@ Snd)%signature (at level 30) : signature_scope.

(** We declare measures to the system using the [Measure] class.
   Otherwise the instances would easily introduce loops,
   never instantiating the [f] function.  *)

Class Measure {A B} (f : A -> B).

(** Standard measures. *)

Instance fst_measure : @Measure (A * B) A Fst.
Instance snd_measure : @Measure (A * B) B Snd.

(** We define a product relation over [A*B]: each components should
    satisfy the corresponding initial relation. *)

Definition RelProd {A B}(RA:relation A)(RB:relation B) : relation (A*B) :=
 relation_conjunction (RA @@1) (RB @@2).

Infix "*" := RelProd : signature_scope.

Section RelCompFun_Instances.
  Context {A B : Type} (R : relation B).

  Global Instance RelCompFun_Reflexive
    `(Measure A B f, Reflexive _ R) : Reflexive (R@@f).
  Proof. firstorder. Qed.

  Global Instance RelCompFun_Symmetric
    `(Measure A B f, Symmetric _ R) : Symmetric (R@@f).
  Proof. firstorder. Qed.

  Global Instance RelCompFun_Transitive
    `(Measure A B f, Transitive _ R) : Transitive (R@@f).
  Proof. firstorder. Qed.

  Global Instance RelCompFun_Irreflexive
    `(Measure A B f, Irreflexive _ R) : Irreflexive (R@@f).
  Proof. firstorder. Qed.

  Global Instance RelCompFun_Equivalence
    `(Measure A B f, Equivalence _ R) : Equivalence (R@@f).

  Global Instance RelCompFun_StrictOrder
    `(Measure A B f, StrictOrder _ R) : StrictOrder (R@@f).

End RelCompFun_Instances.

Instance RelProd_Reflexive {A B}(RA:relation A)(RB:relation B)
 `(Reflexive _ RA, Reflexive _ RB) : Reflexive (RA*RB).
Proof. firstorder. Qed.

Instance RelProd_Symmetric {A B}(RA:relation A)(RB:relation B)
 `(Symmetric _ RA, Symmetric _ RB) : Symmetric (RA*RB).
Proof. firstorder. Qed.

Instance RelProd_Transitive {A B}(RA:relation A)(RB:relation B)
 `(Transitive _ RA, Transitive _ RB) : Transitive (RA*RB).
Proof. firstorder. Qed.

Instance RelProd_Equivalence {A B}(RA:relation A)(RB:relation B)
 `(Equivalence _ RA, Equivalence _ RB) : Equivalence (RA*RB).

Lemma FstRel_ProdRel {A B}(RA:relation A) :
 relation_equivalence (RA @@1) (RA*(fun _ _ : B => True)).
Proof. firstorder. Qed.

Lemma SndRel_ProdRel {A B}(RB:relation B) :
 relation_equivalence (RB @@2) ((fun _ _ : A =>True) * RB).
Proof. firstorder. Qed.

Instance FstRel_sub {A B} (RA:relation A)(RB:relation B):
 subrelation (RA*RB) (RA @@1).
Proof. firstorder. Qed.

Instance SndRel_sub {A B} (RA:relation A)(RB:relation B):
 subrelation (RA*RB) (RB @@2).
Proof. firstorder. Qed.

Instance pair_compat { A B } (RA:relation A)(RB:relation B) :
 Proper (RA==>RB==> RA*RB) (@pair _ _).
Proof. firstorder. Qed.

Instance fst_compat { A B } (RA:relation A)(RB:relation B) :
 Proper (RA*RB ==> RA) Fst.
Proof.
intros (x,y) (x',y') (Hx,Hy); compute in *; auto.
Qed.

Instance snd_compat { A B } (RA:relation A)(RB:relation B) :
 Proper (RA*RB ==> RB) Snd.
Proof.
intros (x,y) (x',y') (Hx,Hy); compute in *; auto.
Qed.

Instance RelCompFun_compat {A B}(f:A->B)(R : relation B)
 `(Proper _ (Ri==>Ri==>Ro) R) :
 Proper (Ri@@f==>Ri@@f==>Ro) (R@@f)%signature.
Proof. unfold RelCompFun; firstorder. Qed.

Hint Unfold RelProd RelCompFun.
Hint Extern 2 (RelProd _ _ _ _) => split.