summaryrefslogtreecommitdiff
path: root/theories/Classes/Morphisms.v
blob: 9895c5a466f9f828e9a6b4ca05f2e3cd092fd7c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * Typeclass-based morphism definition and standard, minimal instances

   Author: Matthieu Sozeau
   Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)

(* $Id$ *)

Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Relations.Relation_Definitions.
Require Export Coq.Classes.RelationClasses.

Generalizable All Variables.
Local Obligation Tactic := simpl_relation.

(** * Morphisms.

   We now turn to the definition of [Proper] and declare standard instances.
   These will be used by the [setoid_rewrite] tactic later. *)

(** A morphism for a relation [R] is a proper element of the relation.
   The relation [R] will be instantiated by [respectful] and [A] by an arrow
   type for usual morphisms. *)

Class Proper {A} (R : relation A) (m : A) : Prop :=
  proper_prf : R m m.

(** Respectful morphisms. *)

(** The fully dependent version, not used yet. *)

Definition respectful_hetero
  (A B : Type)
  (C : A -> Type) (D : B -> Type)
  (R : A -> B -> Prop)
  (R' : forall (x : A) (y : B), C x -> D y -> Prop) :
    (forall x : A, C x) -> (forall x : B, D x) -> Prop :=
    fun f g => forall x y, R x y -> R' x y (f x) (g y).

(** The non-dependent version is an instance where we forget dependencies. *)

Definition respectful {A B : Type}
  (R : relation A) (R' : relation B) : relation (A -> B) :=
  Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').

(** Notations reminiscent of the old syntax for declaring morphisms. *)

Delimit Scope signature_scope with signature.

Arguments Scope Proper [type_scope signature_scope].
Arguments Scope respectful [type_scope type_scope signature_scope signature_scope].

Module ProperNotations.

  Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature))
    (right associativity, at level 55) : signature_scope.

  Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature))
    (right associativity, at level 55) : signature_scope.

  Notation " R --> R' " := (@respectful _ _ (inverse (R%signature)) (R'%signature))
    (right associativity, at level 55) : signature_scope.

End ProperNotations.

Export ProperNotations.

Open Local Scope signature_scope.

(** Dependent pointwise lifting of a relation on the range. *)

Definition forall_relation {A : Type} {B : A -> Type} (sig : Π a : A, relation (B a)) : relation (Π x : A, B x) :=
  λ f g, Π a : A, sig a (f a) (g a).

Arguments Scope forall_relation [type_scope type_scope signature_scope].

(** Non-dependent pointwise lifting *)

Definition pointwise_relation (A : Type) {B : Type} (R : relation B) : relation (A -> B) :=
  Eval compute in forall_relation (B:=λ _, B) (λ _, R).

Lemma pointwise_pointwise A B (R : relation B) :
  relation_equivalence (pointwise_relation A R) (@eq A ==> R).
Proof. intros. split. simpl_relation. firstorder. Qed.

(** We can build a PER on the Coq function space if we have PERs on the domain and
   codomain. *)

Hint Unfold Reflexive : core.
Hint Unfold Symmetric : core.
Hint Unfold Transitive : core.

Typeclasses Opaque respectful pointwise_relation forall_relation.

Program Instance respectful_per `(PER A R, PER B R') : PER (R ==> R').

  Next Obligation.
  Proof with auto.
    assert(R x0 x0).
    transitivity y0... symmetry...
    transitivity (y x0)...
  Qed.

(** Subrelations induce a morphism on the identity. *)

Instance subrelation_id_proper `(subrelation A R₁ R₂) : Proper (R₁ ==> R₂) id.
Proof. firstorder. Qed.

(** The subrelation property goes through products as usual. *)

Lemma subrelation_respectful `(subl : subrelation A R₂ R₁, subr : subrelation B S₁ S₂) :
  subrelation (R₁ ==> S₁) (R₂ ==> S₂).
Proof. simpl_relation. apply subr. apply H. apply subl. apply H0. Qed.

(** And of course it is reflexive. *)

Lemma subrelation_refl A R : @subrelation A R R.
Proof. simpl_relation. Qed.

Ltac subrelation_tac T U :=
  (is_ground T ; is_ground U ; class_apply @subrelation_refl) ||
    class_apply @subrelation_respectful || class_apply @subrelation_refl.

Hint Extern 3 (@subrelation _ ?T ?U) => subrelation_tac T U : typeclass_instances.

(** [Proper] is itself a covariant morphism for [subrelation]. *)

Lemma subrelation_proper `(mor : Proper A R₁ m, unc : Unconvertible (relation A) R₁ R₂,
  sub : subrelation A R₁ R₂) : Proper R₂ m.
Proof.
  intros. apply sub. apply mor.
Qed.

CoInductive apply_subrelation : Prop := do_subrelation.

Ltac proper_subrelation :=
  match goal with
    [ H : apply_subrelation |- _ ] => clear H ; class_apply @subrelation_proper
  end.

Hint Extern 5 (@Proper _ ?H _) => proper_subrelation : typeclass_instances.

Instance proper_subrelation_proper :
  Proper (subrelation ++> eq ==> impl) (@Proper A).
Proof. reduce. subst. firstorder. Qed.

(** Essential subrelation instances for [iff], [impl] and [pointwise_relation]. *)

Instance iff_impl_subrelation : subrelation iff impl | 2.
Proof. firstorder. Qed.

Instance iff_inverse_impl_subrelation : subrelation iff (inverse impl) | 2.
Proof. firstorder. Qed.

Instance pointwise_subrelation {A} `(sub : subrelation B R R') :
  subrelation (pointwise_relation A R) (pointwise_relation A R') | 4.
Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.

(** For dependent function types. *)
Lemma forall_subrelation A (B : A -> Type) (R S : forall x : A, relation (B x)) :
  (forall a, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S).
Proof. reduce. apply H. apply H0. Qed.

(** We use an extern hint to help unification. *)

Hint Extern 4 (subrelation (@forall_relation ?A ?B ?R) (@forall_relation _ _ ?S)) =>
  apply (@forall_subrelation A B R S) ; intro : typeclass_instances.

(** Any symmetric relation is equal to its inverse. *)

Lemma subrelation_symmetric A R `(Symmetric A R) : subrelation (inverse R) R.
Proof. reduce. red in H0. symmetry. assumption. Qed.

Hint Extern 4 (subrelation (inverse _) _) => 
  class_apply @subrelation_symmetric : typeclass_instances.

(** The complement of a relation conserves its proper elements. *)

Program Instance complement_proper
  `(mR : Proper (A -> A -> Prop) (RA ==> RA ==> iff) R) :
  Proper (RA ==> RA ==> iff) (complement R).

  Next Obligation.
  Proof.
    unfold complement.
    pose (mR x y H x0 y0 H0).
    intuition.
  Qed.

(** The [inverse] too, actually the [flip] instance is a bit more general. *)

Program Instance flip_proper
  `(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) :
  Proper (RB ==> RA ==> RC) (flip f).

  Next Obligation.
  Proof.
    apply mor ; auto.
  Qed.

(** Every Transitive relation gives rise to a binary morphism on [impl],
   contravariant in the first argument, covariant in the second. *)

Program Instance trans_contra_co_morphism
  `(Transitive A R) : Proper (R --> R ++> impl) R.

  Next Obligation.
  Proof with auto.
    transitivity x...
    transitivity x0...
  Qed.

(** Proper declarations for partial applications. *)

Program Instance trans_contra_inv_impl_morphism
  `(Transitive A R) : Proper (R --> inverse impl) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity y...
  Qed.

Program Instance trans_co_impl_morphism
  `(Transitive A R) : Proper (R ++> impl) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity x0...
  Qed.

Program Instance trans_sym_co_inv_impl_morphism
  `(PER A R) : Proper (R ++> inverse impl) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity y... symmetry...
  Qed.

Program Instance trans_sym_contra_impl_morphism
  `(PER A R) : Proper (R --> impl) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity x0... symmetry...
  Qed.

Program Instance per_partial_app_morphism
  `(PER A R) : Proper (R ==> iff) (R x) | 2.

  Next Obligation.
  Proof with auto.
    split. intros ; transitivity x0...
    intros.
    transitivity y...
    symmetry...
  Qed.

(** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof
   to get an [R y z] goal. *)

Program Instance trans_co_eq_inv_impl_morphism
  `(Transitive A R) : Proper (R ==> (@eq A) ==> inverse impl) R | 2.

  Next Obligation.
  Proof with auto.
    transitivity y...
  Qed.

(** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *)

Program Instance PER_morphism `(PER A R) : Proper (R ==> R ==> iff) R | 1.

  Next Obligation.
  Proof with auto.
    split ; intros.
    transitivity x0... transitivity x... symmetry...

    transitivity y... transitivity y0... symmetry...
  Qed.

Lemma symmetric_equiv_inverse `(Symmetric A R) : relation_equivalence R (flip R).
Proof. firstorder. Qed.

Program Instance compose_proper A B C R₀ R₁ R₂ :
  Proper ((R₁ ==> R₂) ==> (R₀ ==> R₁) ==> (R₀ ==> R₂)) (@compose A B C).

  Next Obligation.
  Proof.
    simpl_relation.
    unfold compose. apply H. apply H0. apply H1.
  Qed.

(** Coq functions are morphisms for Leibniz equality,
   applied only if really needed. *)

Instance reflexive_eq_dom_reflexive (A : Type) `(Reflexive B R') :
  Reflexive (@Logic.eq A ==> R').
Proof. simpl_relation. Qed.

(** [respectful] is a morphism for relation equivalence. *)

Instance respectful_morphism :
  Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence) (@respectful A B).
Proof.
  reduce.
  unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *.
  split ; intros.

    rewrite <- H0.
    apply H1.
    rewrite H.
    assumption.

    rewrite H0.
    apply H1.
    rewrite <- H.
    assumption.
Qed.

(** Every element in the carrier of a reflexive relation is a morphism for this relation.
   We use a proxy class for this case which is used internally to discharge reflexivity constraints.
   The [Reflexive] instance will almost always be used, but it won't apply in general to any kind of
   [Proper (A -> B) _ _] goal, making proof-search much slower. A cleaner solution would be to be able
   to set different priorities in different hint bases and select a particular hint database for
   resolution of a type class constraint.*)

Class ProperProxy {A} (R : relation A) (m : A) : Prop :=
  proper_proxy : R m m.

Lemma eq_proper_proxy A (x : A) : ProperProxy (@eq A) x.
Proof. firstorder. Qed.

Lemma reflexive_proper_proxy `(Reflexive A R) (x : A) : ProperProxy R x.
Proof. firstorder. Qed.

Lemma proper_proper_proxy `(Proper A R x) : ProperProxy R x.
Proof. firstorder. Qed.

Hint Extern 1 (ProperProxy _ _) => 
  class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances.
Hint Extern 2 (ProperProxy ?R _) => not_evar R; class_apply @proper_proper_proxy : typeclass_instances.

(** [R] is Reflexive, hence we can build the needed proof. *)

Lemma Reflexive_partial_app_morphism `(Proper (A -> B) (R ==> R') m, ProperProxy A R x) :
   Proper R' (m x).
Proof. simpl_relation. Qed.

Class Params {A : Type} (of : A) (arity : nat).

Class PartialApplication.

CoInductive normalization_done : Prop := did_normalization.

Ltac partial_application_tactic :=
  let rec do_partial_apps H m :=
    match m with
      | ?m' ?x => class_apply @Reflexive_partial_app_morphism ; [do_partial_apps H m'|clear H]
      | _ => idtac
    end
  in
  let rec do_partial H ar m :=
    match ar with
      | 0 => do_partial_apps H m
      | S ?n' =>
        match m with
          ?m' ?x => do_partial H n' m'
        end
    end
  in
  let on_morphism m :=
    let m' := fresh in head_of_constr m' m ;
    let n := fresh in evar (n:nat) ;
    let v := eval compute in n in clear n ;
    let H := fresh in
      assert(H:Params m' v) by typeclasses eauto ;
      let v' := eval compute in v in subst m';
      do_partial H v' m
 in
  match goal with
    | [ _ : normalization_done |- _ ] => fail 1
    | [ _ : @Params _ _ _ |- _ ] => fail 1
    | [ |- @Proper ?T _ (?m ?x) ] =>
      match goal with
        | [ _ : PartialApplication |- _ ] =>
          class_apply @Reflexive_partial_app_morphism
        | _ =>
          on_morphism (m x) ||
            (class_apply @Reflexive_partial_app_morphism ;
              [ pose Build_PartialApplication | idtac ])
      end
  end.

Hint Extern 4 (@Proper _ _ _) => partial_application_tactic : typeclass_instances.

Lemma inverse_respectful : forall (A : Type) (R : relation A) (B : Type) (R' : relation B),
  relation_equivalence (inverse (R ==> R')) (inverse R ==> inverse R').
Proof.
  intros.
  unfold flip, respectful.
  split ; intros ; intuition.
Qed.

(** Special-purpose class to do normalization of signatures w.r.t. inverse. *)

Class Normalizes (A : Type) (m : relation A) (m' : relation A) : Prop :=
  normalizes : relation_equivalence m m'.

(** Current strategy: add [inverse] everywhere and reduce using [subrelation]
   afterwards. *)

Lemma inverse_atom A R : Normalizes A R (inverse (inverse R)).
Proof.
  firstorder.
Qed.

Lemma inverse_arrow `(NA : Normalizes A R (inverse R'''), NB : Normalizes B R' (inverse R'')) :
  Normalizes (A -> B) (R ==> R') (inverse (R''' ==> R'')%signature).
Proof. unfold Normalizes in *. intros.
  rewrite NA, NB. firstorder.
Qed.

Ltac inverse :=
  match goal with
    | [ |- Normalizes _ (respectful _ _) _ ] => class_apply @inverse_arrow
    | _ => class_apply @inverse_atom
  end.

Hint Extern 1 (Normalizes _ _ _) => inverse : typeclass_instances.

(** Treating inverse: can't make them direct instances as we
   need at least a [flip] present in the goal. *)

Lemma inverse1 `(subrelation A R' R) : subrelation (inverse (inverse R')) R.
Proof. firstorder. Qed.

Lemma inverse2 `(subrelation A R R') : subrelation R (inverse (inverse R')).
Proof. firstorder. Qed.

Hint Extern 1 (subrelation (flip _) _) => class_apply @inverse1 : typeclass_instances.
Hint Extern 1 (subrelation _ (flip _)) => class_apply @inverse2 : typeclass_instances.

(** That's if and only if *)

Lemma eq_subrelation `(Reflexive A R) : subrelation (@eq A) R.
Proof. simpl_relation. Qed.

(* Hint Extern 3 (subrelation eq ?R) => not_evar R ; class_apply eq_subrelation : typeclass_instances. *)

(** Once we have normalized, we will apply this instance to simplify the problem. *)

Definition proper_inverse_proper `(mor : Proper A R m) : Proper (inverse R) m := mor.

Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_inverse_proper : typeclass_instances.

(** Bootstrap !!! *)

Instance proper_proper : Proper (relation_equivalence ==> eq ==> iff) (@Proper A).
Proof.
  simpl_relation.
  reduce in H.
  split ; red ; intros.
  setoid_rewrite <- H.
  apply H0.
  setoid_rewrite H.
  apply H0.
Qed.

Lemma proper_normalizes_proper `(Normalizes A R0 R1, Proper A R1 m) : Proper R0 m.
Proof.
  red in H, H0.
  setoid_rewrite H.
  assumption.
Qed.

Ltac proper_normalization :=
  match goal with
    | [ _ : normalization_done |- _ ] => fail 1
    | [ _ : apply_subrelation |- @Proper _ ?R _ ] => let H := fresh "H" in
      set(H:=did_normalization) ; class_apply @proper_normalizes_proper
  end.

Hint Extern 6 (@Proper _ _ _) => proper_normalization : typeclass_instances.

(** Every reflexive relation gives rise to a morphism, only for immediately solving goals without variables. *)

Lemma reflexive_proper `{Reflexive A R} (x : A)
   : Proper R x.
Proof. firstorder. Qed.

Lemma proper_eq A (x : A) : Proper (@eq A) x.
Proof. intros. apply reflexive_proper. Qed.

Ltac proper_reflexive :=
  match goal with
    | [ _ : normalization_done |- _ ] => fail 1
    | _ => class_apply proper_eq || class_apply @reflexive_proper
  end.

Hint Extern 7 (@Proper _ _ _) => proper_reflexive : typeclass_instances.


(** When the relation on the domain is symmetric, we can
    inverse the relation on the codomain. Same for binary functions. *)

Lemma proper_sym_flip :
 forall `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f),
 Proper (R1==>inverse R2) f.
Proof.
intros A R1 Sym B R2 f Hf.
intros x x' Hxx'. apply Hf, Sym, Hxx'.
Qed.

Lemma proper_sym_flip_2 :
 forall `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f),
 Proper (R1==>R2==>inverse R3) f.
Proof.
intros A R1 Sym1 B R2 Sym2 C R3 f Hf.
intros x x' Hxx' y y' Hyy'. apply Hf; auto.
Qed.

(** When the relation on the domain is symmetric, a predicate is
  compatible with [iff] as soon as it is compatible with [impl].
  Same with a binary relation. *)

Lemma proper_sym_impl_iff : forall `(Symmetric A R)`(Proper _ (R==>impl) f),
 Proper (R==>iff) f.
Proof.
intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
Qed.

Lemma proper_sym_impl_iff_2 :
 forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>impl) f),
 Proper (R==>R'==>iff) f.
Proof.
intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
repeat red in Hf. split; eauto.
Qed.

(** A [PartialOrder] is compatible with its underlying equivalence. *)

Instance PartialOrder_proper `(PartialOrder A eqA R) :
  Proper (eqA==>eqA==>iff) R.
Proof.
intros.
apply proper_sym_impl_iff_2; auto with *.
intros x x' Hx y y' Hy Hr.
transitivity x.
generalize (partial_order_equivalence x x'); compute; intuition.
transitivity y; auto.
generalize (partial_order_equivalence y y'); compute; intuition.
Qed.

(** From a [PartialOrder] to the corresponding [StrictOrder]:
     [lt = le /\ ~eq].
    If the order is total, we could also say [gt = ~le]. *)

Lemma PartialOrder_StrictOrder `(PartialOrder A eqA R) :
  StrictOrder (relation_conjunction R (complement eqA)).
Proof.
split; compute.
intros x (_,Hx). apply Hx, Equivalence_Reflexive.
intros x y z (Hxy,Hxy') (Hyz,Hyz'). split.
apply PreOrder_Transitive with y; assumption.
intro Hxz.
apply Hxy'.
apply partial_order_antisym; auto.
rewrite Hxz; auto.
Qed.

Hint Extern 4 (StrictOrder (relation_conjunction _ _)) => 
  class_apply PartialOrder_StrictOrder : typeclass_instances.

(** From a [StrictOrder] to the corresponding [PartialOrder]:
     [le = lt \/ eq].
    If the order is total, we could also say [ge = ~lt]. *)

Lemma StrictOrder_PreOrder
 `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) :
 PreOrder (relation_disjunction R eqA).
Proof.
split.
intros x. right. reflexivity.
intros x y z [Hxy|Hxy] [Hyz|Hyz].
left. transitivity y; auto.
left. rewrite <- Hyz; auto.
left. rewrite Hxy; auto.
right. transitivity y; auto.
Qed.

Hint Extern 4 (PreOrder (relation_disjunction _ _)) => 
  class_apply StrictOrder_PreOrder : typeclass_instances.

Lemma StrictOrder_PartialOrder
  `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) :
  PartialOrder eqA (relation_disjunction R eqA).
Proof.
intros. intros x y. compute. intuition.
elim (StrictOrder_Irreflexive x).
transitivity y; auto.
Qed.

Hint Extern 4 (PartialOrder _ (relation_disjunction _ _)) => 
  class_apply StrictOrder_PartialOrder : typeclass_instances.