summaryrefslogtreecommitdiff
path: root/theories/Classes/EquivDec.v
blob: 59e800c27d03f32e9566405ff8355cdd98cd08b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** * Decidable equivalences.

   Author: Matthieu Sozeau
   Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)

(** Export notations. *)

Require Export Coq.Classes.Equivalence.

(** The [DecidableSetoid] class asserts decidability of a [Setoid].
   It can be useful in proofs to reason more classically. *)

Require Import Coq.Logic.Decidable.
Require Import Coq.Bool.Bool.
Require Import Coq.Arith.Peano_dec.
Require Import Coq.Program.Program.

Generalizable Variables A B R.

Open Scope equiv_scope.

Class DecidableEquivalence `(equiv : Equivalence A) :=
  setoid_decidable : forall x y : A, decidable (x === y).

(** The [EqDec] class gives a decision procedure for a particular
   setoid equality. *)

Class EqDec A R {equiv : Equivalence R} :=
  equiv_dec : forall x y : A, { x === y } + { x =/= y }.

(** We define the [==] overloaded notation for deciding equality. It does not
   take precedence of [==] defined in the type scope, hence we can have both
   at the same time. *)

Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70) : equiv_scope.

Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
  match x with
    | left H => @right _ _ H
    | right H => @left _ _ H
  end.

Local Open Scope program_scope.

(** Invert the branches. *)

Program Definition nequiv_dec `{EqDec A} (x y : A) : { x =/= y } + { x === y } := 
          swap_sumbool (x == y).


(** Overloaded notation for inequality. *)

Infix "<>" := nequiv_dec (no associativity, at level 70) : equiv_scope.

(** Define boolean versions, losing the logical information. *)

Definition equiv_decb `{EqDec A} (x y : A) : bool :=
  if x == y then true else false.

Definition nequiv_decb `{EqDec A} (x y : A) : bool :=
  negb (equiv_decb x y).

Infix "==b" := equiv_decb (no associativity, at level 70).
Infix "<>b" := nequiv_decb (no associativity, at level 70).

(** Decidable leibniz equality instances. *)

(** The equiv is burried inside the setoid, but we can recover it by specifying
   which setoid we're talking about. *)

Program Instance nat_eq_eqdec : EqDec nat eq := eq_nat_dec.

Program Instance bool_eqdec : EqDec bool eq := bool_dec.

Program Instance unit_eqdec : EqDec unit eq := fun x y => in_left.

  Next Obligation.
  Proof.
    destruct x ; destruct y.
    reflexivity.
  Qed.

Obligation Tactic := unfold complement, equiv ; program_simpl.

Program Instance prod_eqdec `(EqDec A eq, EqDec B eq) :
  ! EqDec (prod A B) eq :=
  { equiv_dec x y :=
    let '(x1, x2) := x in
    let '(y1, y2) := y in
    if x1 == y1 then
      if x2 == y2 then in_left
      else in_right
    else in_right }.

Program Instance sum_eqdec `(EqDec A eq, EqDec B eq) :
  EqDec (sum A B) eq := {
  equiv_dec x y :=
    match x, y with
      | inl a, inl b => if a == b then in_left else in_right
      | inr a, inr b => if a == b then in_left else in_right
      | inl _, inr _ | inr _, inl _ => in_right
    end }.

(** Objects of function spaces with countable domains like bool have decidable
  equality. Proving the reflection requires functional extensionality though. *)

Program Instance bool_function_eqdec `(EqDec A eq) : ! EqDec (bool -> A) eq :=
  { equiv_dec f g :=
    if f true == g true then
      if f false == g false then in_left
      else in_right
    else in_right }.

  Next Obligation.
  Proof.
    extensionality x.
    destruct x ; auto.
  Qed.

Require Import List.

Program Instance list_eqdec `(eqa : EqDec A eq) : ! EqDec (list A) eq :=
  { equiv_dec :=
    fix aux (x y : list A) :=
    match x, y with
      | nil, nil => in_left
      | cons hd tl, cons hd' tl' =>
        if hd == hd' then
          if aux tl tl' then in_left else in_right
          else in_right
      | _, _ => in_right
    end }.

  Next Obligation. destruct y ; unfold not in *; eauto. Defined.

  Solve Obligations with unfold equiv, complement in * ; 
    program_simpl ; intuition (discriminate || eauto).