summaryrefslogtreecommitdiff
path: root/theories/Bool/Bool.v
blob: edf78ed52d7393952c6d1b794ad558b441804de9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** The type [bool] is defined in the prelude as
    [Inductive bool : Set := true : bool | false : bool] *)

(** Most of the lemmas in this file are trivial after breaking all booleans *)

Ltac destr_bool :=
 intros; destruct_all bool; simpl in *; trivial; try discriminate.

(** Interpretation of booleans as propositions *)

Definition Is_true (b:bool) :=
  match b with
    | true => True
    | false => False
  end.

(*******************)
(** * Decidability *)
(*******************)

Lemma bool_dec : forall b1 b2 : bool, {b1 = b2} + {b1 <> b2}.
Proof.
  decide equality.
Defined.

(*********************)
(** * Discrimination *)
(*********************)

Lemma diff_true_false : true <> false.
Proof.
  discriminate.
Qed.
Hint Resolve diff_true_false : bool.

Lemma diff_false_true : false <> true.
Proof.
  discriminate.
Qed.
Hint Resolve diff_false_true : bool.
Hint Extern 1 (false <> true) => exact diff_false_true.

Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False.
Proof.
  destr_bool.
Qed.

Lemma not_true_is_false : forall b:bool, b <> true -> b = false.
Proof.
  destr_bool; intuition.
Qed.

Lemma not_false_is_true : forall b:bool, b <> false -> b = true.
Proof.
  destr_bool; intuition.
Qed.

Lemma not_true_iff_false : forall b, b <> true <-> b = false.
Proof.
  destr_bool; intuition.
Qed.

Lemma not_false_iff_true : forall b, b <> false <-> b = true.
Proof.
  destr_bool; intuition.
Qed.

(**********************)
(** * Order on booleans *)
(**********************)

Definition leb (b1 b2:bool) :=
  match b1 with
    | true => b2 = true
    | false => True
  end.
Hint Unfold leb: bool.

Lemma leb_implb : forall b1 b2, leb b1 b2 <-> implb b1 b2 = true.
Proof.
  destr_bool; intuition.
Qed.

(* Infix "<=" := leb : bool_scope. *)

(*************)
(** * Equality *)
(*************)

Definition eqb (b1 b2:bool) : bool :=
  match b1, b2 with
    | true, true => true
    | true, false => false
    | false, true => false
    | false, false => true
  end.

Lemma eqb_subst :
  forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2.
Proof.
  destr_bool.
Qed.

Lemma eqb_reflx : forall b:bool, eqb b b = true.
Proof.
  destr_bool.
Qed.

Lemma eqb_prop : forall a b:bool, eqb a b = true -> a = b.
Proof.
  destr_bool.
Qed.

Lemma eqb_true_iff : forall a b:bool, eqb a b = true <-> a = b.
Proof.
  destr_bool; intuition.
Qed.

Lemma eqb_false_iff : forall a b:bool, eqb a b = false <-> a <> b.
Proof.
  destr_bool; intuition.
Qed.

(************************)
(** * A synonym of [if] on [bool] *)
(************************)

Definition ifb (b1 b2 b3:bool) : bool :=
  match b1 with
    | true => b2
    | false => b3
  end.

Open Scope bool_scope.

(****************************)
(** * De Morgan laws          *)
(****************************)

Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
Proof.
  destr_bool.
Qed.

Lemma negb_andb : forall b1 b2:bool, negb (b1 && b2) = negb b1 || negb b2.
Proof.
  destr_bool.
Qed.

(********************************)
(** * Properties of [negb]    *)
(********************************)

Lemma negb_involutive : forall b:bool, negb (negb b) = b.
Proof.
  destr_bool.
Qed.

Lemma negb_involutive_reverse : forall b:bool, b = negb (negb b).
Proof.
  destr_bool.
Qed.

Notation negb_elim := negb_involutive (only parsing).
Notation negb_intro := negb_involutive_reverse (only parsing).

Lemma negb_sym : forall b b':bool, b' = negb b -> b = negb b'.
Proof.
  destr_bool.
Qed.

Lemma no_fixpoint_negb : forall b:bool, negb b <> b.
Proof.
  destr_bool.
Qed.

Lemma eqb_negb1 : forall b:bool, eqb (negb b) b = false.
Proof.
  destr_bool.
Qed.

Lemma eqb_negb2 : forall b:bool, eqb b (negb b) = false.
Proof.
  destr_bool.
Qed.

Lemma if_negb :
  forall (A:Type) (b:bool) (x y:A),
    (if negb b then x else y) = (if b then y else x).
Proof.
  destr_bool.
Qed.

Lemma negb_true_iff : forall b, negb b = true <-> b = false.
Proof.
  destr_bool; intuition.
Qed.

Lemma negb_false_iff : forall b, negb b = false <-> b = true.
Proof.
  destr_bool; intuition.
Qed.


(********************************)
(** * Properties of [orb]     *)
(********************************)

Lemma orb_true_iff :
  forall b1 b2, b1 || b2 = true <-> b1 = true \/ b2 = true.
Proof.
  destr_bool; intuition.
Qed.

Lemma orb_false_iff :
  forall b1 b2, b1 || b2 = false <-> b1 = false /\ b2 = false.
Proof.
  destr_bool; intuition.
Qed.

Lemma orb_true_elim :
  forall b1 b2:bool, b1 || b2 = true -> {b1 = true} + {b2 = true}.
Proof.
  destruct b1; simpl; auto.
Defined.

Lemma orb_prop : forall a b:bool, a || b = true -> a = true \/ b = true.
Proof.
 intros; apply orb_true_iff; trivial.
Qed.

Lemma orb_true_intro :
  forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true.
Proof.
 intros; apply orb_true_iff; trivial.
Qed.
Hint Resolve orb_true_intro: bool.

Lemma orb_false_intro :
  forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
Proof.
 intros. subst. reflexivity.
Qed.
Hint Resolve orb_false_intro: bool.

Lemma orb_false_elim :
  forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
Proof.
  intros. apply orb_false_iff; trivial.
Qed.

Lemma orb_diag : forall b, b || b = b.
Proof.
 destr_bool.
Qed.

(** [true] is a zero for [orb] *)

Lemma orb_true_r : forall b:bool, b || true = true.
Proof.
  destr_bool.
Qed.
Hint Resolve orb_true_r: bool.

Lemma orb_true_l : forall b:bool, true || b = true.
Proof.
  reflexivity.
Qed.

Notation orb_b_true := orb_true_r (only parsing).
Notation orb_true_b := orb_true_l (only parsing).

(** [false] is neutral for [orb] *)

Lemma orb_false_r : forall b:bool, b || false = b.
Proof.
  destr_bool.
Qed.
Hint Resolve orb_false_r: bool.

Lemma orb_false_l : forall b:bool, false || b = b.
Proof.
  destr_bool.
Qed.
Hint Resolve orb_false_l: bool.

Notation orb_b_false := orb_false_r (only parsing).
Notation orb_false_b := orb_false_l (only parsing).

(** Complementation *)

Lemma orb_negb_r : forall b:bool, b || negb b = true.
Proof.
  destr_bool.
Qed.
Hint Resolve orb_negb_r: bool.

Notation orb_neg_b := orb_negb_r (only parsing).

(** Commutativity *)

Lemma orb_comm : forall b1 b2:bool, b1 || b2 = b2 || b1.
Proof.
  destr_bool.
Qed.

(** Associativity *)

Lemma orb_assoc : forall b1 b2 b3:bool, b1 || (b2 || b3) = b1 || b2 || b3.
Proof.
  destr_bool.
Qed.
Hint Resolve orb_comm orb_assoc: bool.

(*******************************)
(** * Properties of [andb]     *)
(*******************************)

Lemma andb_true_iff :
  forall b1 b2:bool, b1 && b2 = true <-> b1 = true /\ b2 = true.
Proof.
  destr_bool; intuition.
Qed.

Lemma andb_false_iff :
  forall b1 b2:bool, b1 && b2 = false <-> b1 = false \/ b2 = false.
Proof.
  destr_bool; intuition.
Qed.

Lemma andb_true_eq :
  forall a b:bool, true = a && b -> true = a /\ true = b.
Proof.
  destr_bool. auto.
Defined.

Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
Proof.
  intros. apply andb_false_iff. auto.
Qed.

Lemma andb_false_intro2 : forall b1 b2:bool, b2 = false -> b1 && b2 = false.
Proof.
  intros. apply andb_false_iff. auto.
Qed.

(** [false] is a zero for [andb] *)

Lemma andb_false_r : forall b:bool, b && false = false.
Proof.
  destr_bool.
Qed.

Lemma andb_false_l : forall b:bool, false && b = false.
Proof.
  reflexivity.
Qed.

Notation andb_b_false := andb_false_r (only parsing).
Notation andb_false_b := andb_false_l (only parsing).

Lemma andb_diag : forall b, b && b = b.
Proof.
 destr_bool.
Qed.

(** [true] is neutral for [andb] *)

Lemma andb_true_r : forall b:bool, b && true = b.
Proof.
  destr_bool.
Qed.

Lemma andb_true_l : forall b:bool, true && b = b.
Proof.
  reflexivity.
Qed.

Notation andb_b_true := andb_true_r (only parsing).
Notation andb_true_b := andb_true_l (only parsing).

Lemma andb_false_elim :
  forall b1 b2:bool, b1 && b2 = false -> {b1 = false} + {b2 = false}.
Proof.
  destruct b1; simpl; auto.
Defined.
Hint Resolve andb_false_elim: bool.

(** Complementation *)

Lemma andb_negb_r : forall b:bool, b && negb b = false.
Proof.
  destr_bool.
Qed.
Hint Resolve andb_negb_r: bool.

Notation andb_neg_b := andb_negb_r (only parsing).

(** Commutativity *)

Lemma andb_comm : forall b1 b2:bool, b1 && b2 = b2 && b1.
Proof.
  destr_bool.
Qed.

(** Associativity *)

Lemma andb_assoc : forall b1 b2 b3:bool, b1 && (b2 && b3) = b1 && b2 && b3.
Proof.
  destr_bool.
Qed.

Hint Resolve andb_comm andb_assoc: bool.

(*******************************************)
(** * Properties mixing [andb] and [orb] *)
(*******************************************)

(** Distributivity *)

Lemma andb_orb_distrib_r :
  forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3.
Proof.
  destr_bool.
Qed.

Lemma andb_orb_distrib_l :
 forall b1 b2 b3:bool, (b1 || b2) && b3 = b1 && b3 || b2 && b3.
Proof.
  destr_bool.
Qed.

Lemma orb_andb_distrib_r :
  forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3).
Proof.
  destr_bool.
Qed.

Lemma orb_andb_distrib_l :
  forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3).
Proof.
  destr_bool.
Qed.

(* Compatibility *)
Notation demorgan1 := andb_orb_distrib_r (only parsing).
Notation demorgan2 := andb_orb_distrib_l (only parsing).
Notation demorgan3 := orb_andb_distrib_r (only parsing).
Notation demorgan4 := orb_andb_distrib_l (only parsing).

(** Absorption *)

Lemma absorption_andb : forall b1 b2:bool, b1 && (b1 || b2) = b1.
Proof.
  destr_bool.
Qed.

Lemma absorption_orb : forall b1 b2:bool, b1 || b1 && b2 = b1.
Proof.
  destr_bool.
Qed.

(* begin hide *)
(* Compatibility *)
Notation absoption_andb := absorption_andb (only parsing).
Notation absoption_orb := absorption_orb (only parsing).
(* end hide *)

(*********************************)
(** * Properties of [xorb]       *)
(*********************************)

(** [false] is neutral for [xorb] *)

Lemma xorb_false_r : forall b:bool, xorb b false = b.
Proof.
  destr_bool.
Qed.

Lemma xorb_false_l : forall b:bool, xorb false b = b.
Proof.
  destr_bool.
Qed.

Notation xorb_false := xorb_false_r (only parsing).
Notation false_xorb := xorb_false_l (only parsing).

(** [true] is "complementing" for [xorb] *)

Lemma xorb_true_r : forall b:bool, xorb b true = negb b.
Proof.
  reflexivity.
Qed.

Lemma xorb_true_l : forall b:bool, xorb true b = negb b.
Proof.
  reflexivity.
Qed.

Notation xorb_true := xorb_true_r (only parsing).
Notation true_xorb := xorb_true_l (only parsing).

(** Nilpotency (alternatively: identity is a inverse for [xorb]) *)

Lemma xorb_nilpotent : forall b:bool, xorb b b = false.
Proof.
  destr_bool.
Qed.

(** Commutativity *)

Lemma xorb_comm : forall b b':bool, xorb b b' = xorb b' b.
Proof.
  destr_bool.
Qed.

(** Associativity *)

Lemma xorb_assoc_reverse :
  forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b'').
Proof.
  destr_bool.
Qed.

Notation xorb_assoc := xorb_assoc_reverse (only parsing). (* Compatibility *)

Lemma xorb_eq : forall b b':bool, xorb b b' = false -> b = b'.
Proof.
  destr_bool.
Qed.

Lemma xorb_move_l_r_1 :
  forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''.
Proof.
  destr_bool.
Qed.

Lemma xorb_move_l_r_2 :
  forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'.
Proof.
  destr_bool.
Qed.

Lemma xorb_move_r_l_1 :
  forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''.
Proof.
  destr_bool.
Qed.

Lemma xorb_move_r_l_2 :
  forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'.
Proof.
  destr_bool.
Qed.

Lemma negb_xorb_l : forall b b', negb (xorb b b') = xorb (negb b) b'.
Proof.
 destruct b,b'; trivial.
Qed.

Lemma negb_xorb_r : forall b b', negb (xorb b b') = xorb b (negb b').
Proof.
 destruct b,b'; trivial.
Qed.

Lemma xorb_negb_negb : forall b b', xorb (negb b) (negb b') = xorb b b'.
Proof.
 destruct b,b'; trivial.
Qed.

(** Lemmas about the [b = true] embedding of [bool] to [Prop] *)

Lemma eq_iff_eq_true : forall b1 b2, b1 = b2 <-> (b1 = true <-> b2 = true).
Proof.
  destr_bool; intuition.
Qed.

Lemma eq_true_iff_eq : forall b1 b2, (b1 = true <-> b2 = true) -> b1 = b2.
Proof.
  apply eq_iff_eq_true.
Qed.

Notation bool_1 := eq_true_iff_eq (only parsing). (* Compatibility *)

Lemma eq_true_negb_classical : forall b:bool, negb b <> true -> b = true.
Proof.
  destr_bool; intuition.
Qed.

Notation bool_3 := eq_true_negb_classical (only parsing). (* Compatibility *)

Lemma eq_true_not_negb : forall b:bool, b <> true -> negb b = true.
Proof.
  destr_bool; intuition.
Qed.

Notation bool_6 := eq_true_not_negb (only parsing). (* Compatibility *)

Hint Resolve eq_true_not_negb : bool.

(* An interesting lemma for auto but too strong to keep compatibility *)

Lemma absurd_eq_bool : forall b b':bool, False -> b = b'.
Proof.
  contradiction.
Qed.

(* A more specific one that preserves compatibility with old hint bool_3 *)

Lemma absurd_eq_true : forall b, False -> b = true.
Proof.
  contradiction.
Qed.
Hint Resolve absurd_eq_true.

(* A specific instance of eq_trans that preserves compatibility with
   old hint bool_2 *)

Lemma trans_eq_bool : forall x y z:bool, x = y -> y = z -> x = z.
Proof.
  apply eq_trans.
Qed.
Hint Resolve trans_eq_bool.

(*****************************************)
(** * Reflection of [bool] into [Prop] *)
(*****************************************)

(** [Is_true] and equality *)

Hint Unfold Is_true: bool.

Lemma Is_true_eq_true : forall x:bool, Is_true x -> x = true.
Proof.
  destr_bool; tauto.
Qed.

Lemma Is_true_eq_left : forall x:bool, x = true -> Is_true x.
Proof.
  intros; subst; auto with bool.
Qed.

Lemma Is_true_eq_right : forall x:bool, true = x -> Is_true x.
Proof.
  intros; subst; auto with bool.
Qed.

Notation Is_true_eq_true2 := Is_true_eq_right (only parsing).

Hint Immediate Is_true_eq_right Is_true_eq_left: bool.

Lemma eqb_refl : forall x:bool, Is_true (eqb x x).
Proof.
  destr_bool.
Qed.

Lemma eqb_eq : forall x y:bool, Is_true (eqb x y) -> x = y.
Proof.
  destr_bool; tauto.
Qed.

(** [Is_true] and connectives *)

Lemma orb_prop_elim :
  forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b.
Proof.
  destr_bool; tauto.
Qed.

Notation orb_prop2 := orb_prop_elim (only parsing).

Lemma orb_prop_intro :
  forall a b:bool, Is_true a \/ Is_true b -> Is_true (a || b).
Proof.
  destr_bool; tauto.
Qed.

Lemma andb_prop_intro :
  forall b1 b2:bool, Is_true b1 /\ Is_true b2 -> Is_true (b1 && b2).
Proof.
  destr_bool; tauto.
Qed.
Hint Resolve andb_prop_intro: bool.

Notation andb_true_intro2 :=
  (fun b1 b2 H1 H2 => andb_prop_intro b1 b2 (conj H1 H2))
  (only parsing).

Lemma andb_prop_elim :
  forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b.
Proof.
  destr_bool; auto.
Qed.
Hint Resolve andb_prop_elim: bool.

Notation andb_prop2 := andb_prop_elim (only parsing).

Lemma eq_bool_prop_intro :
  forall b1 b2, (Is_true b1 <-> Is_true b2) -> b1 = b2.
Proof.
  destr_bool; tauto.
Qed.

Lemma eq_bool_prop_elim : forall b1 b2, b1 = b2 -> (Is_true b1 <-> Is_true b2).
Proof.
  destr_bool; tauto.
Qed.

Lemma negb_prop_elim : forall b, Is_true (negb b) -> ~ Is_true b.
Proof.
  destr_bool; tauto.
Qed.

Lemma negb_prop_intro : forall b, ~ Is_true b -> Is_true (negb b).
Proof.
  destr_bool; tauto.
Qed.

Lemma negb_prop_classical : forall b, ~ Is_true (negb b) -> Is_true b.
Proof.
  destr_bool; tauto.
Qed.

Lemma negb_prop_involutive : forall b, Is_true b -> ~ Is_true (negb b).
Proof.
  destr_bool; tauto.
Qed.

(** Rewrite rules about andb, orb and if (used in romega) *)

Lemma andb_if : forall (A:Type)(a a':A)(b b' : bool),
  (if b && b' then a else a') =
  (if b then if b' then a else a' else a').
Proof.
  destr_bool.
Qed.

Lemma negb_if : forall (A:Type)(a a':A)(b:bool),
 (if negb b then a else a') =
 (if b then a' else a).
Proof.
  destr_bool.
Qed.

(*****************************************)
(** * Alternative versions of [andb] and [orb]
    with lazy behavior (for vm_compute)  *)
(*****************************************)

Notation "a &&& b" := (if a then b else false)
 (at level 40, left associativity) : lazy_bool_scope.
Notation "a ||| b" := (if a then true else b)
 (at level 50, left associativity) : lazy_bool_scope.

Local Open Scope lazy_bool_scope.

Lemma andb_lazy_alt : forall a b : bool, a && b = a &&& b.
Proof.
  reflexivity.
Qed.

Lemma orb_lazy_alt : forall a b : bool, a || b = a ||| b.
Proof.
  reflexivity.
Qed.

(*****************************************)
(** * Reflect: a specialized inductive type for
    relating propositions and booleans,
    as popularized by the Ssreflect library. *)
(*****************************************)

Inductive reflect (P : Prop) : bool -> Set :=
  | ReflectT : P -> reflect P true
  | ReflectF : ~ P -> reflect P false.
Hint Constructors reflect : bool.

(** Interest: a case on a reflect lemma or hyp performs clever
    unification, and leave the goal in a convenient shape
    (a bit like case_eq). *)

(** Relation with iff : *)

Lemma reflect_iff : forall P b, reflect P b -> (P<->b=true).
Proof.
 destruct 1; intuition; discriminate.
Qed.

Lemma iff_reflect : forall P b, (P<->b=true) -> reflect P b.
Proof.
 destr_bool; intuition.
Defined.

(** It would be nice to join [reflect_iff] and [iff_reflect]
    in a unique [iff] statement, but this isn't allowed since
    [iff] is in Prop. *)

(** Reflect implies decidability of the proposition *)

Lemma reflect_dec : forall P b, reflect P b -> {P}+{~P}.
Proof.
 destruct 1; auto.
Defined.

(** Reciprocally, from a decidability, we could state a
    [reflect] as soon as we have a [bool_of_sumbool]. *)