summaryrefslogtreecommitdiff
path: root/theories/Arith/Gt.v
blob: 67c94fdf649921f4bad83664e46b00ac306b610c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Theorems about [gt] in [nat].

 This file is DEPRECATED now, see module [PeanoNat.Nat] instead,
 which favor [lt] over [gt].

 [gt] is defined in [Init/Peano.v] as:
<<
Definition gt (n m:nat) := m < n.
>>
*)

Require Import PeanoNat Le Lt Plus.
Local Open Scope nat_scope.

(** * Order and successor *)

Theorem gt_Sn_O n : S n > 0.
Proof Nat.lt_0_succ _.

Theorem gt_Sn_n n : S n > n.
Proof Nat.lt_succ_diag_r _.

Theorem gt_n_S n m : n > m -> S n > S m.
Proof.
 apply Nat.succ_lt_mono.
Qed.

Lemma gt_S_n n m : S m > S n -> m > n.
Proof.
 apply Nat.succ_lt_mono.
Qed.

Theorem gt_S n m : S n > m -> n > m \/ m = n.
Proof.
 intro. now apply Nat.lt_eq_cases, Nat.succ_le_mono.
Qed.

Lemma gt_pred n m : m > S n -> pred m > n.
Proof.
 apply Nat.lt_succ_lt_pred.
Qed.

(** * Irreflexivity *)

Lemma gt_irrefl n : ~ n > n.
Proof Nat.lt_irrefl _.

(** * Asymmetry *)

Lemma gt_asym n m : n > m -> ~ m > n.
Proof Nat.lt_asymm _ _.

(** * Relating strict and large orders *)

Lemma le_not_gt n m : n <= m -> ~ n > m.
Proof.
 apply Nat.le_ngt.
Qed.

Lemma gt_not_le n m : n > m -> ~ n <= m.
Proof.
 apply Nat.lt_nge.
Qed.

Theorem le_S_gt n m : S n <= m -> m > n.
Proof.
 apply Nat.le_succ_l.
Qed.

Lemma gt_S_le n m : S m > n -> n <= m.
Proof.
 apply Nat.succ_le_mono.
Qed.

Lemma gt_le_S n m : m > n -> S n <= m.
Proof.
 apply Nat.le_succ_l.
Qed.

Lemma le_gt_S n m : n <= m -> S m > n.
Proof.
 apply Nat.succ_le_mono.
Qed.

(** * Transitivity *)

Theorem le_gt_trans n m p : m <= n -> m > p -> n > p.
Proof.
 intros. now apply Nat.lt_le_trans with m.
Qed.

Theorem gt_le_trans n m p : n > m -> p <= m -> n > p.
Proof.
 intros. now apply Nat.le_lt_trans with m.
Qed.

Lemma gt_trans n m p : n > m -> m > p -> n > p.
Proof.
 intros. now apply Nat.lt_trans with m.
Qed.

Theorem gt_trans_S n m p : S n > m -> m > p -> n > p.
Proof.
 intros. apply Nat.lt_le_trans with m; trivial. now apply Nat.succ_le_mono.
Qed.

(** * Comparison to 0 *)

Theorem gt_0_eq n : n > 0 \/ 0 = n.
Proof.
 destruct n; [now right | left; apply Nat.lt_0_succ].
Qed.

(** * Simplification and compatibility *)

Lemma plus_gt_reg_l n m p : p + n > p + m -> n > m.
Proof.
 apply Nat.add_lt_mono_l.
Qed.

Lemma plus_gt_compat_l n m p : n > m -> p + n > p + m.
Proof.
 apply Nat.add_lt_mono_l.
Qed.

(** * Hints *)

Hint Resolve gt_Sn_O gt_Sn_n gt_n_S : arith.
Hint Immediate gt_S_n gt_pred : arith.
Hint Resolve gt_irrefl gt_asym : arith.
Hint Resolve le_not_gt gt_not_le : arith.
Hint Immediate le_S_gt gt_S_le : arith.
Hint Resolve gt_le_S le_gt_S : arith.
Hint Resolve gt_trans_S le_gt_trans gt_le_trans: arith.
Hint Resolve plus_gt_compat_l: arith.

(* begin hide *)
Notation gt_O_eq := gt_0_eq (only parsing).
(* end hide *)