summaryrefslogtreecommitdiff
path: root/theories/Arith/Factorial.v
blob: 5e2f491a73540dc1e168cd9032531b6483f4a8eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Factorial.v 9245 2006-10-17 12:53:34Z notin $ i*)

Require Import Plus.
Require Import Mult.
Require Import Lt.
Open Local Scope nat_scope.

(** Factorial *)

Boxed Fixpoint fact (n:nat) : nat :=
  match n with
    | O => 1
    | S n => S n * fact n
  end.

Arguments Scope fact [nat_scope].

Lemma lt_O_fact : forall n:nat, 0 < fact n.
Proof.
  simple induction n; unfold lt in |- *; simpl in |- *; auto with arith.
Qed.

Lemma fact_neq_0 : forall n:nat, fact n <> 0.
Proof.
  intro.
  apply sym_not_eq.
  apply lt_O_neq.
  apply lt_O_fact.
Qed.

Lemma fact_le : forall n m:nat, n <= m -> fact n <= fact m.
Proof.
  induction 1.
  apply le_n.
  assert (1 * fact n <= S m * fact m).
  apply mult_le_compat.
  apply lt_le_S; apply lt_O_Sn.
  assumption.
  simpl (1 * fact n) in H0.
  rewrite <- plus_n_O in H0.
  assumption.
Qed.