summaryrefslogtreecommitdiff
path: root/test-suite/ssr/rewpatterns.v
blob: f7993f402ddc8bc7cf9bfc91b58835ff11f21188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)


Require Import ssreflect.
Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp.

Lemma test1 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
by move=> x y f; rewrite [_.+1](addnC x.+1).
Qed.

Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y).
by move=> x y f; rewrite {2}[in f _]addnC.
Qed.

Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)).
by move=> x y f; rewrite [in f _](addnC y).
Qed.

Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x)  = f(x + y) + f(y + x) + f(x + y).
by move=> x y f; rewrite {1 3}[in f _](addnC y).
Qed.

(* patterns catching bound vars not supported *)
Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)).
by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *)
Qed.

Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x).
by move=> x y f; rewrite [in X in (f _ X)](addnC y).
Qed.

Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x =
                                      x + f (x + y) x + f (y + x) x.
by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
Qed.

Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x =
                                       x + f (x + y) x + f (y + y) x.
by move=> x y f E; rewrite {2}[in X in (f X _)]E.
Qed.

Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x =
                                     x + f (fun _       => x + y) x + f (fun _ => y + x) x.
by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
Qed.

Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x =
                                      x + f (fun _ _ _       => x + y) x.
by move=> x y f E; rewrite {2}[in X in (f X _)]E.
Qed.

Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x =
                                     x + f (x + y) x + f (y + x) x.
by move=> x y f E; rewrite {1}[X in (f X _)]addnC.
Qed.

Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
                                        x + f (x + y) x + f (y + y) (x + y).
by move=> x y f E; rewrite {1}[in X in (f X X)]E.
Qed.

Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
                                         x + f (x + y) x + f (y + y) (y + y).
by move=> x y f E; rewrite [in X in (f X X)]E.
Qed.

Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) =
                                         x + f (x + y) x + f (y + y) (y + y).
by move=> x y f E; rewrite -[X in (f X X)]E.
Qed.

Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x).
by move=> x y f; rewrite [(x + y) in X in (f X)]addnC.
Qed.

Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC.
Qed.

Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0.
Proof.
rewrite [in f _]addSn.
match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end.
rewrite -[X in _ = X]addn0.
match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end.
rewrite -{2}[in X in _ = X](addn0 0).
match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end.
rewrite [_.+1 in X in f _ X](addnC x.+1).
match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
rewrite [x.+1 + y as X in f X _]addnC.
match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
Admitted.

Goal (exists x : 'I_3, x > 0).
apply: (ex_intro _ (@Ordinal _ 2 _)).
Admitted.

Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0).
move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)).
 by apply: leq_trans y_lt2 _.
by move=> y_lt3; apply: leq_trans _ y_gt1.
Qed.

Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True).
move=> x y P E.
have: P x -> P y by suff: x = y by move=> ?; congr (P _).
Admitted.

Goal forall a : bool, a -> true && a || false && a.
by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=.
Qed.

Goal forall a : bool, a -> true && a || false && a.
by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=.
Qed.

Variable a : bool.
Definition f x := x || a.
Definition g x := f x.

Goal a -> g false.
by move=> Ha; rewrite [g _]/f orbC Ha.
Qed.

Goal a -> g false || g false.
move=> Ha; rewrite {2}[g _]/f orbC Ha.
match goal with |- (is_true (false || true || g false)) => done end.
Qed.

Goal a -> (a && a || true && a) && true.
by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f.
Qed.

Goal a -> (a || a) && true.
by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f.
Qed.