summaryrefslogtreecommitdiff
path: root/test-suite/ssr/elim.v
blob: 908249a36933dcc6d191a7ff6473341a8c69724f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)

Require Import ssreflect.
Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp.
Axiom daemon : False. Ltac myadmit := case: daemon.

(* Ltac debugging feature: recursive elim + eq generation *)
Lemma testL1 : forall A (s : seq A), s = s.
Proof.
move=> A s; elim branch: s => [|x xs _].
match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end.
match goal with _ : _ =  _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end.
Qed.

(* The same but with explicit eliminator and a conflict in the intro pattern *)
Lemma testL2 : forall A (s : seq A), s = s.
Proof.
move=> A s; elim/last_ind branch: s => [|x s _].
match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end.
match goal with _ : _ =  rcons _ _ |- rcons _ _ = rcons _ _ => move: branch => // | _ => fail end.
Qed.

(* The same but without names for variables involved in the generated eq *)
Lemma testL3 : forall A (s : seq A), s = s.
Proof.
move=> A s; elim branch: s; move: (s) => _.
match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end.
move=> _; match goal with _ : _ =  _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end.
Qed.

Inductive foo : Type := K1 : foo | K2 : foo -> foo -> foo | K3 : (nat -> foo) -> foo.

(* The same but with more intros to be done *)
Lemma testL4 : forall (o : foo), o = o.
Proof.
move=> o; elim branch: o.
match goal with _ : _ = K1 |- K1 = K1 => move: branch => // | _ => fail end.
move=> _; match goal with _ : _ = K2 _ _ |- K2 _ _ = K2 _ _ => move: branch => // | _ => fail end.
move=> _; match goal with _ : _ =  K3 _ |- K3 _ = K3 _ => move: branch => // | _ => fail end.
Qed.

(* Occurrence counting *)
Lemma testO1: forall (b : bool), b = b.
Proof.
move=> b; case: (b) / idP.
match goal with |- is_true b -> true = true => done | _ => fail end.
match goal with |- ~ is_true b -> false = false => done | _ => fail end.
Qed.

(* The same but only the second occ *)
Lemma testO2: forall (b : bool), b = b.
Proof.
move=> b; case: {2}(b) / idP.
match goal with |- is_true b -> b = true => done | _ => fail end.
match goal with |- ~ is_true b -> b = false => move/(introF idP) => // | _ => fail end.
Qed.

(* The same but with eq generation *)
Lemma testO3: forall (b : bool), b = b.
Proof.
move=> b; case E: {2}(b) / idP.
match goal with _ : is_true b, _ : b = true |- b = true => move: E => _; done | _ => fail end.
match goal with H : ~ is_true b, _ : b = false |- b = false => move: E => _; move/(introF idP): H => // | _ => fail end.
Qed.

(* Views *)
Lemma testV1 : forall A (s : seq A), s = s.
Proof.
move=> A s; case/lastP E: {1}s => [| x xs].
match goal with _ : s = [::] |- [::] = s => symmetry; exact E | _ => fail end.
match goal with _ : s = rcons x xs |- rcons _ _ = s => symmetry; exact E | _ => fail end.
Qed.

Lemma testV2 : forall A (s : seq A), s = s.
Proof.
move=> A s; case/lastP E: s => [| x xs].
match goal with _ : s = [::] |- [::] = [::] => done | _ => fail end.
match goal with _ : s = rcons x xs |- rcons _ _ = rcons _ _ => done | _ => fail end.
Qed.

Lemma testV3 : forall A (s : seq A), s = s.
Proof.
move=> A s; case/lastP: s => [| x xs].
match goal with |- [::] = [::] => done | _ => fail end.
match goal with |- rcons _ _ = rcons _ _ => done | _ => fail end.
Qed.

(* Patterns *)
Lemma testP1: forall (x y : nat), (y == x) && (y == x) -> y == x.
move=> x y; elim: {2}(_ == _) / eqP.
match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end.
match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end.
Qed.

(* The same but with an implicit pattern *)
Lemma testP2 : forall (x y : nat), (y == x) && (y == x) -> y == x.
move=> x y; elim: {2}_ / eqP.
match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end.
match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end.
Qed.

(* The same but with an eq generation switch *)
Lemma testP3 : forall (x y : nat), (y == x) && (y == x) -> y == x.
move=> x y; elim E: {2}_ / eqP.
match goal with _ : y = x |- (is_true ((y == x) && true) -> is_true (y == x)) => rewrite E; reflexivity | _ => fail end.
match goal with _ : y <> x |- (is_true ((y == x) && false) -> is_true (y == x)) => rewrite E => /= H; exact H  | _ => fail end.
Qed.

Inductive spec : nat -> nat -> nat -> Prop :=
| specK : forall a b c, a = 0 -> b = 2 -> c = 4 -> spec a b c.
Lemma specP : spec 0 2 4. Proof. by constructor. Qed.

Lemma testP4 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
Proof.
case: specP => a b c defa defb defc.
match goal with |- (a.+1 + a.+1) * c = b + (a.+1 + a.+1) + (b + b) => subst; done | _ => fail end.
Qed.

Lemma testP5 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
Proof.
case: (1 + 1) _ / specP => a b c defa defb defc.
match goal with |- b * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end.
Qed.

Lemma testP6 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
Proof.
case: {2}(1 + 1) _ / specP => a b c defa defb defc.
match goal with |- (a.+1 + a.+1) * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end.
Qed.

Lemma testP7 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
Proof.
case: _ (1 + 1) (2 + _) / specP => a b c defa defb defc.
match goal with |- b * a.+4 = c + c => subst; done | _ => fail end.
Qed.

Lemma testP8 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
Proof.
case E: (1 + 1) (2 + _) / specP=> [a b c defa defb defc].
match goal with |- b * a.+4 = c + c => subst; done | _ => fail end.
Qed.

Variables (T : Type) (tr : T -> T).

Inductive exec (cf0 cf1 : T) : seq T -> Prop :=
| exec_step : tr cf0 = cf1 -> exec cf0 cf1 [::]
| exec_star : forall cf2 t, tr cf0 = cf2 ->
  exec cf2 cf1 t -> exec cf0 cf1 (cf2 :: t).

Inductive execr (cf0 cf1 : T) : seq T -> Prop :=
| execr_step : tr cf0 = cf1 -> execr cf0 cf1 [::]
| execr_star : forall cf2 t, execr cf0 cf2 t ->
  tr cf2 = cf1 -> execr cf0 cf1 (t ++ [:: cf2]).

Lemma execP : forall cf0 cf1 t, exec cf0 cf1 t <-> execr cf0 cf1 t.
Proof.
move=> cf0 cf1 t; split => [] Ecf.
  elim: Ecf.
    match goal with |- forall cf2 cf3 : T, tr cf2 = cf3 ->
      execr cf2 cf3 [::] => myadmit | _ => fail end.
  match goal with |- forall (cf2 cf3 cf4 : T) (t0 : seq T),
   tr cf2 = cf4 -> exec cf4 cf3 t0 -> execr cf4 cf3 t0 ->
   execr cf2 cf3 (cf4 :: t0) => myadmit | _ => fail end.
elim: Ecf.
  match goal with |- forall cf2 : T,
    tr cf0 = cf2 -> exec cf0 cf2 [::] => myadmit | _ => fail end.
match goal with |- forall (cf2 cf3 : T) (t0 : seq T),
 execr cf0 cf3 t0 -> exec cf0 cf3 t0 -> tr cf3 = cf2 ->
 exec cf0 cf2 (t0 ++ [:: cf3]) => myadmit | _ => fail end.
Qed.

Fixpoint plus (m n : nat) {struct n} : nat :=
   match n with
   | 0 => m
   | S p => S (plus m p)
   end.

Definition plus_equation :
forall m n : nat,
       plus m n =
       match n with
       | 0 => m
       | p.+1 => (plus m p).+1
       end
:=
fun m n : nat =>
match
  n as n0
  return
    (forall m0 : nat,
     plus m0 n0 =
     match n0 with
     | 0 => m0
     | p.+1 => (plus m0 p).+1
     end)
with
| 0 => @erefl nat
| n0.+1 => fun m0 : nat => erefl (plus m0 n0).+1
end m.

Definition plus_rect :
forall (m : nat) (P : nat -> nat -> Type),
       (forall n : nat, n = 0 -> P 0 m) ->
       (forall n p : nat,
        n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) ->
       forall n : nat, P n (plus m n)
:=
fun (m : nat) (P : nat -> nat -> Type)
  (f0 : forall n : nat, n = 0 -> P 0 m)
  (f : forall n p : nat,
       n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) =>
fix plus0 (n : nat) : P n (plus m n) :=
  eq_rect_r [eta P n]
    (let f1 := f0 n in
     let f2 := f n in
     match
       n as n0
       return
         (n = n0 ->
          (forall p : nat,
           n0 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) ->
          (n0 = 0 -> P 0 m) ->
          P n0 match n0 with
               | 0 => m
               | p.+1 => (plus m p).+1
               end)
     with
     | 0 =>
         fun (_ : n = 0)
           (_ : forall p : nat,
                0 = p.+1 ->
                P p (plus m p) -> P p.+1 (plus m p).+1)
           (f4 : 0 = 0 -> P 0 m) => unkeyed (f4 (erefl 0))
     | n0.+1 =>
         fun (_ : n = n0.+1)
           (f3 : forall p : nat,
                 n0.+1 = p.+1 ->
                 P p (plus m p) -> P p.+1 (plus m p).+1)
           (_ : n0.+1 = 0 -> P 0 m) =>
         let f5 :=
           let p := n0 in
           let H := erefl n0.+1 : n0.+1 = p.+1 in f3 p H in
         unkeyed (let Hrec := plus0 n0 in f5 Hrec)
     end (erefl n) f2 f1) (plus_equation m n).

Definition plus_ind := plus_rect.

Lemma exF x y z: plus (plus x y) z = plus x (plus y z).
elim/plus_ind: z / (plus _ z).
match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
Undo 2.
elim/plus_ind: (plus _ z).
match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
Undo 2.
elim/plus_ind: {z}(plus _ z).
match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
Undo 2.
elim/plus_ind: {z}_.
match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
Undo 2.
elim/plus_ind: z / _.
match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
 done.
by move=> _ p _ ->.
Qed.

(* BUG elim-False *)
Lemma testeF : False -> 1 = 0.
Proof. by elim. Qed.