summaryrefslogtreecommitdiff
path: root/test-suite/bugs/closed/5215.v
blob: ecf529159676f61e046d775f43af07ed97ad86bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
Require Import Coq.Logic.FunctionalExtensionality.
Require Import Coq.Program.Tactics.

Global Set Primitive Projections.

Global Set Universe Polymorphism.

Global Unset Universe Minimization ToSet.

Class Category : Type :=
{
  Obj : Type;
  Hom : Obj -> Obj -> Type;
  compose : forall {a b c : Obj}, (Hom a b) -> (Hom b c) -> (Hom a c);
  id : forall {a : Obj}, Hom a a;
}.

Arguments Obj {_}, _.
Arguments id {_ _}, {_} _, _ _.
Arguments Hom {_} _ _, _ _ _.
Arguments compose {_} {_ _ _} _ _, _ {_ _ _} _ _, _ _ _ _ _ _.

Coercion Obj : Category >-> Sortclass.

Definition Opposite (C : Category) : Category :=
{|

  Obj := Obj C;
  Hom := fun a b => Hom b a;
  compose :=
    fun a b c (f : Hom b a) (g : Hom c b) => compose C c b a g f;
  id := fun c => id C c;
|}.

Record Functor (C C' : Category) : Type :=
{
  FO : C -> C';
  FA : forall {a b}, Hom a b -> Hom (FO a) (FO b);
}.

Arguments FO {_ _} _ _.
Arguments FA {_ _} _ {_ _} _, {_ _} _ _ _ _.

Section Opposite_Functor.
  Context {C D : Category} (F : Functor C D).

  Program Definition Opposite_Functor : (Functor (Opposite C) (Opposite D)) :=
    {|
      FO := FO F;
      FA := fun _ _ h => FA F h;
    |}.

End Opposite_Functor.

Section Functor_Compose.
  Context {C C' C'' : Category} (F : Functor C C') (F' : Functor C' C'').

  Program Definition Functor_compose : Functor C C'' :=
    {|
      FO := fun c => FO F' (FO F c);
      FA := fun c d f => FA F' (FA F f)
    |}.

End Functor_Compose.

Section Algebras.
  Context {C : Category} (T : Functor C C).
  Record Algebra : Type :=
    {
      Alg_Carrier : C;
      Constructors : Hom (FO T Alg_Carrier) Alg_Carrier
    }.

  Record Algebra_Hom (alg alg' : Algebra) : Type :=
    {
      Alg_map : Hom (Alg_Carrier alg) (Alg_Carrier alg');

      Alg_map_com : compose (FA T Alg_map) (Constructors alg')
                     = compose (Constructors alg) Alg_map
    }.

  Arguments Alg_map {_ _} _.
  Arguments Alg_map_com {_ _} _.
  Program Definition Algebra_Hom_compose
          {alg alg' alg'' : Algebra}
          (h : Algebra_Hom alg alg')
          (h' : Algebra_Hom alg' alg'')
    : Algebra_Hom alg alg''
    :=
      {|
        Alg_map := compose (Alg_map h) (Alg_map h')
      |}.

  Next Obligation. Proof. Admitted.

  Lemma Algebra_Hom_eq_simplify (alg alg' : Algebra)
        (ah ah' : Algebra_Hom alg alg')
    : (Alg_map ah) = (Alg_map ah') -> ah = ah'.
  Proof. Admitted.

  Program Definition Algebra_Hom_id (alg : Algebra) : Algebra_Hom alg alg :=
    {|
      Alg_map := id
    |}.

  Next Obligation. Admitted.

  Definition Algebra_Cat : Category :=
    {|
      Obj := Algebra;
      Hom := Algebra_Hom;
      compose := @Algebra_Hom_compose;
      id := Algebra_Hom_id;
    |}.

End Algebras.

Arguments Alg_Carrier {_ _} _.
Arguments Constructors {_ _} _.
Arguments Algebra_Hom {_ _} _ _.
Arguments Alg_map {_ _ _ _} _.
Arguments Alg_map_com {_ _ _ _} _.
Arguments Algebra_Hom_id {_ _} _.

Section CoAlgebras.
  Context {C : Category}.

  Definition CoAlgebra (T : Functor C C) :=
    @Algebra (Opposite C) (Opposite_Functor T).

  Definition CoAlgebra_Hom {T : Functor C C} :=
      @Algebra_Hom (Opposite C) (Opposite_Functor T).

  Definition CoAlgebra_Hom_id {T : Functor C C} :=
    @Algebra_Hom_id  (Opposite C) (Opposite_Functor T).

  Definition CoAlgebra_Cat (T : Functor C C) :=
    @Algebra_Cat (Opposite C) (Opposite_Functor T).

End CoAlgebras.

Program Definition Type_Cat : Category :=
{|
  Obj := Type;
  Hom := (fun A B => A -> B);
  compose := fun A B C (g : A -> B) (h : B -> C) => fun (x : A) => h (g x);
  id := fun A => fun x => x
|}.

Local Obligation Tactic := idtac.

Program Definition Prod_Cat (C C' : Category) : Category :=
{|
  Obj := C * C';
  Hom :=
    fun a b =>
      ((Hom (fst a) (fst b)) * (Hom (snd a) (snd b)))%type;
  compose :=
    fun a b c f g =>
      ((compose (fst f) (fst g)), (compose (snd f)(snd g)));
  id := fun c => (id, id)
|}.

Class Terminal (C : Category) : Type :=
{
  terminal : C;
  t_morph : forall (d : Obj), Hom d terminal;
  t_morph_unique : forall (d : Obj) (f g : (Hom d terminal)), f = g
}.

Arguments terminal {_} _.
Arguments t_morph {_} _ _.
Arguments t_morph_unique {_} _ _ _ _.

Coercion terminal : Terminal >-> Obj.

Definition Initial (C : Category) := Terminal (Opposite C).
Existing Class Initial.

Record Product {C : Category} (c d : C) : Type :=
{
  product : C;
  Pi_1 : Hom product c;
  Pi_2 : Hom product d;
  Prod_morph_ex : forall (p' : Obj) (r1 : Hom p' c) (r2 : Hom p' d), (Hom p' product);
}.

Arguments Product _ _ _, {_} _ _.

Arguments Pi_1 {_ _ _ _}, {_ _ _} _.
Arguments Pi_2 {_ _ _ _}, {_ _ _} _.
Arguments Prod_morph_ex {_ _ _} _ _ _ _.

Coercion product : Product >-> Obj.

Definition Has_Products (C : Category) : Type := forall a b, Product a b.

Existing Class Has_Products.

Program Definition Prod_Func (C : Category) {HP : Has_Products C}
  : Functor (Prod_Cat C C) C :=
{|
  FO := fun x => HP (fst x) (snd x);
  FA := fun a b f => Prod_morph_ex _ _ (compose Pi_1 (fst f)) (compose  Pi_2 (snd f))
|}.

Arguments Prod_Func _ _, _ {_}.

Definition Sum (C : Category) := @Product (Opposite C).

Arguments Sum _ _ _, {_} _ _.

Definition Has_Sums (C : Category) : Type :=  forall (a b : C), (Sum a b).

Existing Class Has_Sums.

Program Definition sum_Sum (A B : Type) : (@Sum Type_Cat A B) :=
{|
  product := (A + B)%type;
  Prod_morph_ex :=
    fun (p' : Type)
        (r1 : A -> p')
        (r2 : B -> p')
        (X : A + B) =>
      match X return p' with
      | inl a => r1 a
      | inr b => r2 b
      end
|}.
Next Obligation. simpl; auto. Defined.
Next Obligation. simpl; auto. Defined.

Program Instance Type_Cat_Has_Sums : Has_Sums Type_Cat := sum_Sum.

Definition Sum_Func {C : Category} {HS : Has_Sums C} :
  Functor (Prod_Cat C C) C := Opposite_Functor (Prod_Func (Opposite C) HS).

Arguments Sum_Func _ _, _ {_}.

Program Instance unit_Type_term : Terminal Type_Cat :=
{
  terminal := unit;
  t_morph := fun _ _=> tt
}.

Next Obligation. Proof. Admitted.

Program Definition term_id : Functor Type_Cat (Prod_Cat Type_Cat Type_Cat) :=
{|
  FO := fun a => (@terminal Type_Cat _, a);
  FA := fun a b f => (@id _ (@terminal Type_Cat _), f)
|}.

Definition S_nat_func : Functor Type_Cat Type_Cat :=
  Functor_compose term_id (Sum_Func Type_Cat _).

Definition S_nat_alg_cat := Algebra_Cat S_nat_func.

CoInductive CoNat : Set :=
  | CoO : CoNat
  | CoS : CoNat -> CoNat
.

Definition S_nat_coalg_cat := @CoAlgebra_Cat Type_Cat S_nat_func.

Set Printing Universes.
Program Definition CoNat_alg_term : Initial S_nat_coalg_cat :=
{|
  terminal := _;
  t_morph := _
|}.

Next Obligation. Admitted.
Next Obligation. Admitted.

Axiom Admit : False.

Next Obligation.
Proof.
  intros d f g.
  assert(H1 := (@Alg_map_com _ _ _ _ f)). clear.
  assert (inl tt = inr tt) by (exfalso; apply Admit).
  discriminate.
  all: exfalso; apply Admit.
  Show Universes.
Qed.