summaryrefslogtreecommitdiff
path: root/test-suite/bugs/closed/4287.v
blob: 43c9b512950817e419f76f45d74e48df6ba611e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
Unset Strict Universe Declaration.

Universe b.

Universe c.

Definition U : Type@{b} := Type@{c}.

Module Type MT.

Definition T := Prop.
End MT.

Module M : MT.
   Definition T := Type@{b}.

Print Universes.
Fail End M.

Set Universe Polymorphism.

(* This is a modified version of Hurkens with all universes floating *)
Section Hurkens.

Variable down : Type -> Type.
Variable up : Type -> Type.

Hypothesis back : forall A, up (down A) -> A.

Hypothesis forth : forall A, A -> up (down A).

Hypothesis backforth : forall (A:Type) (P:A->Type) (a:A),
      P (back A (forth A a)) -> P a.

Hypothesis backforth_r : forall (A:Type) (P:A->Type) (a:A),
      P a -> P (back A (forth A a)).

(** Proof *)
Definition V : Type := forall A:Type, ((up A -> Type) -> up A -> Type) -> up A -> Type.
Definition U : Type := V -> Type.

Definition sb (z:V) : V := fun A r a => r (z A r) a.
Definition le (i:U -> Type) (x:U) : Type := x (fun A r a => i (fun v => sb v A r a)).
Definition le' (i:up (down U) -> Type) (x:up (down U)) : Type := le (fun a:U => i (forth _ a)) (back _ x).
Definition induct (i:U -> Type) : Type := forall x:U, up (le i x) -> up (i x).
Definition WF : U := fun z => down (induct (fun a => z (down U) le' (forth _ a))).
Definition I (x:U) : Type :=
  (forall i:U -> Type, up (le i x) -> up (i (fun v => sb v (down U) le' (forth _ x)))) -> False.

Lemma Omega : forall i:U -> Type, induct i -> up (i WF).
Proof.
intros i y.
apply y.
unfold le, WF, induct.
apply forth.
intros x H0.
apply y.
unfold sb, le', le.
compute.
apply backforth_r.
exact H0.
Qed.

Lemma lemma1 : induct (fun u => down (I u)).
Proof.
unfold induct.
intros x p.
apply forth.
intro q.
generalize (q (fun u => down (I u)) p).
intro r.
apply back in r.
apply r.
intros i j.
unfold le, sb, le', le in j |-.
apply backforth in j.
specialize q with (i := fun y => i (fun v:V => sb v (down U) le' (forth _ y))).
apply q.
exact j.
Qed.

Lemma lemma2 : (forall i:U -> Type, induct i -> up (i WF)) -> False.
Proof.
intro x.
generalize (x (fun u => down (I u)) lemma1).
intro r; apply back in r.
apply r.
intros i H0.
apply (x (fun y => i (fun v => sb v (down U) le' (forth _ y)))).
unfold le, WF in H0.
apply back in H0.
exact H0.
Qed.

Theorem paradox : False.
Proof.
exact (lemma2 Omega).
Qed.

End Hurkens.

Polymorphic Record box (T : Type) := wrap {unwrap : T}.

(* Here we instantiate to Set *)

Fail Definition down (x : Type) : Prop := box x.
Definition up (x : Prop) : Type := x.

Fail Definition back A : up (down A) -> A := unwrap A.

Fail Definition forth A : A -> up (down A) := wrap A.

Definition id {A : Type} (a : A) := a.
Definition setlt (A : Type@{i}) :=
  let foo := Type@{i} : Type@{j} in True.

Definition setle (B : Type@{i}) :=
  let foo (A : Type@{j}) := A in foo B.

Fail Check @setlt@{j Prop}.
Fail Definition foo := @setle@{j Prop}.
Check setlt@{Set i}.
Check setlt@{Set j}.