summaryrefslogtreecommitdiff
path: root/test-suite/bugs/closed/3956.v
blob: ac30fc736d9b8db399e14c1a788eb5bd072b6b67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
(* -*- mode: coq; coq-prog-args: ("-indices-matter"); mode: visual-line -*- *)
Set Universe Polymorphism.
Set Primitive Projections.
Close Scope nat_scope.

Record prod (A B : Type) := pair { fst : A ; snd : B }.
Arguments pair {A B} _ _.
Arguments fst {A B} _ / .
Arguments snd {A B} _ / .
Notation "x * y" := (prod x y) : type_scope.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.

Unset Strict Universe Declaration.

Definition Type1 := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}.
Definition Type2 := Eval hnf in let gt := (Type1 : Type@{i}) in Type@{i}.

Inductive paths {A : Type} (a : A) : A -> Type :=
  idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y" := (@paths _ x y) : type_scope.
Definition concat {A} {x y z : A} (p : x = y) (q : y = z) : x = z
  := match p, q with idpath, idpath => idpath end.

Definition path_prod {A B : Type} (z z' : A * B)
: (fst z = fst z') -> (snd z = snd z') -> (z = z').
Proof.
  destruct z, z'; simpl; intros [] []; reflexivity.
Defined.  

Module Type TypeM.
  Parameter m : Type2.
End TypeM.

Module ProdM (XM : TypeM) (YM : TypeM) <: TypeM.
  Definition m := XM.m * YM.m.
End ProdM.

Module Type FunctionM (XM YM : TypeM).
  Parameter m : XM.m -> YM.m.
End FunctionM.

Module IdmapM (XM : TypeM) <: FunctionM XM XM.
  Definition m := (fun x => x) : XM.m -> XM.m.
End IdmapM.

Module Type HomotopyM (XM YM : TypeM) (fM gM : FunctionM XM YM).
  Parameter m : forall x, fM.m x = gM.m x.
End HomotopyM.

Module ComposeM (XM YM ZM : TypeM)
       (gM : FunctionM YM ZM) (fM : FunctionM XM YM)
       <: FunctionM XM ZM.
  Definition m := (fun x => gM.m (fM.m x)).
End ComposeM.

Module Type CorecM (YM ZM : TypeM) (fM : FunctionM YM ZM)
       (XM : TypeM) (gM : FunctionM XM ZM).
  Parameter m : XM.m -> YM.m.
  Parameter m_beta : forall x, fM.m (m x) = gM.m x.
End CorecM.

Module Type CoindpathsM (YM ZM : TypeM) (fM : FunctionM YM ZM)
       (XM : TypeM) (hM kM : FunctionM XM YM).
  Module fhM := ComposeM XM YM ZM fM hM.
  Module fkM := ComposeM XM YM ZM fM kM.
  Declare Module mM (pM : HomotopyM XM ZM fhM fkM)
    : HomotopyM XM YM hM kM.
End CoindpathsM.

Module Type Comodality (XM : TypeM).
  Parameter m : Type2.
  Module mM <: TypeM.
    Definition m := m.
  End mM.
  Parameter from : m -> XM.m.
  Module fromM <: FunctionM mM XM.
    Definition m := from.
  End fromM.
  Declare Module corecM : CorecM mM XM fromM.
  Declare Module coindpathsM : CoindpathsM mM XM fromM.
End Comodality.

Module Comodality_Theory (F : Comodality).

  Module F_functor_M (XM YM : TypeM) (fM : FunctionM XM YM)
         (FXM : Comodality XM) (FYM : Comodality YM).
    Module f_o_from_M <: FunctionM FXM.mM YM.
      Definition m := fun x => fM.m (FXM.from x).
    End f_o_from_M.
    Module mM := FYM.corecM FXM.mM f_o_from_M.
    Definition m := mM.m.
  End F_functor_M.

  Module F_prod_cmp_M (XM YM : TypeM)
         (FXM : Comodality XM) (FYM : Comodality YM).
    Module PM := ProdM XM YM.
    Module PFM := ProdM FXM FYM.
    Module fstM <: FunctionM PM XM.
      Definition m := @fst XM.m YM.m.
    End fstM.
    Module sndM <: FunctionM PM YM.
      Definition m := @snd XM.m YM.m.
    End sndM.
    Module FPM := F PM.
    Module FfstM := F_functor_M PM XM fstM FPM FXM.
    Module FsndM := F_functor_M PM YM sndM FPM FYM.
    Definition m : FPM.m -> PFM.m
      := fun z => (FfstM.m z , FsndM.m z).
  End F_prod_cmp_M.

  Module isequiv_F_prod_cmp_M
         (XM YM : TypeM)
         (FXM : Comodality XM) (FYM : Comodality YM).
    (** The comparison map *)
    Module cmpM := F_prod_cmp_M XM YM FXM FYM.
    Module FPM := cmpM.FPM.
    (** We construct an inverse to it using corecursion. *)
    Module prod_from_M <: FunctionM cmpM.PFM cmpM.PM.
      Definition m : cmpM.PFM.m -> cmpM.PM.m
        := fun z => ( FXM.from (fst z) , FYM.from (snd z) ).
    End prod_from_M.
    Module cmpinvM <: FunctionM cmpM.PFM FPM
      := FPM.corecM cmpM.PFM prod_from_M.
    (** We prove the first homotopy *)
    Module cmpinv_o_cmp_M <: FunctionM FPM FPM
      := ComposeM FPM cmpM.PFM FPM cmpinvM cmpM.
    Module idmap_FPM <: FunctionM FPM FPM
      := IdmapM FPM.
    Module cip_FPM := FPM.coindpathsM FPM cmpinv_o_cmp_M idmap_FPM.
    Module cip_FPHM <: HomotopyM FPM cmpM.PM cip_FPM.fhM cip_FPM.fkM.
      Definition m : forall x, cip_FPM.fhM.m x = cip_FPM.fkM.m x.
      Proof.
        intros x.
        refine (concat (cmpinvM.m_beta (cmpM.m x)) _).
        apply path_prod@{i i i}; simpl.
        - exact (cmpM.FfstM.mM.m_beta x).
        - exact (cmpM.FsndM.mM.m_beta x).
      Defined.
    End cip_FPHM.
  End isequiv_F_prod_cmp_M.

End Comodality_Theory.