summaryrefslogtreecommitdiff
path: root/pretyping/typeclasses.ml
blob: d75032e7323f3c3392e86fa3af51fde250a31431 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: typeclasses.ml 13332 2010-07-26 22:12:43Z msozeau $ i*)

(*i*)
open Names
open Libnames
open Decl_kinds
open Term
open Sign
open Evd
open Environ
open Nametab
open Mod_subst
open Util
open Typeclasses_errors
open Libobject
(*i*)


let add_instance_hint_ref = ref (fun id pri -> assert false)
let register_add_instance_hint =
  (:=) add_instance_hint_ref
let add_instance_hint id = !add_instance_hint_ref id

let set_typeclass_transparency_ref = ref (fun id pri -> assert false)
let register_set_typeclass_transparency =
  (:=) set_typeclass_transparency_ref
let set_typeclass_transparency gr c = !set_typeclass_transparency_ref gr c

let mismatched_params env n m = mismatched_ctx_inst env Parameters n m
(* let mismatched_defs env n m = mismatched_ctx_inst env Definitions n m *)
let mismatched_props env n m = mismatched_ctx_inst env Properties n m

type rels = constr list

(* This module defines type-classes *)
type typeclass = {
  (* The class implementation *)
  cl_impl : global_reference;

  (* Context in which the definitions are typed. Includes both typeclass parameters and superclasses. *)
  cl_context : (global_reference * bool) option list * rel_context;

  (* Context of definitions and properties on defs, will not be shared *)
  cl_props : rel_context;

  (* The method implementaions as projections. *)
  cl_projs : (identifier * constant option) list;
}
module Gmap = Fmap.Make(RefOrdered)

type typeclasses = typeclass Gmap.t

type instance = {
  is_class: global_reference;
  is_pri: int option;
  (* Sections where the instance should be redeclared,
     -1 for discard, 0 for none, mutable to avoid redeclarations
     when multiple rebuild_object happen. *)
  is_global: int;
  is_impl: global_reference; 
}

type instances = (instance Gmap.t) Gmap.t

let instance_impl is = is.is_impl

let new_instance cl pri glob impl =
  let global =
    if glob then Lib.sections_depth ()
    else -1
  in
    { is_class = cl.cl_impl;
      is_pri = pri ;
      is_global = global ;
      is_impl = impl }

(*
 * states management
 *)

let classes : typeclasses ref = ref Gmap.empty

let instances : instances ref = ref Gmap.empty

let freeze () = !classes, !instances

let unfreeze (cl,is) =
  classes:=cl;
  instances:=is

let init () =
  classes:= Gmap.empty;
  instances:= Gmap.empty

let _ =
  Summary.declare_summary "classes_and_instances"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = init }

let class_info c =
  try Gmap.find c !classes
  with _ -> not_a_class (Global.env()) (constr_of_global c)

let global_class_of_constr env c =
  try class_info (global_of_constr c)
  with Not_found -> not_a_class env c

let dest_class_app env c =
  let cl, args = decompose_app c in
    global_class_of_constr env cl, args

let class_of_constr c = try Some (fst (dest_class_app (Global.env ()) c)) with _ -> None

let rec is_class_type evd c =
  match kind_of_term c with
  | Prod (_, _, t) -> is_class_type evd t
  | Evar (e, _) when is_defined evd e -> is_class_type evd (Evarutil.nf_evar evd c)
  | _ -> class_of_constr c <> None

let is_class_evar evd evi =
  is_class_type evd evi.Evd.evar_concl

(*
 * classes persistent object
 *)

let load_class (_, cl) =
  classes := Gmap.add cl.cl_impl cl !classes

let cache_class = load_class

let subst_class (subst,cl) =
  let do_subst_con c = fst (Mod_subst.subst_con subst c)
  and do_subst c = Mod_subst.subst_mps subst c
  and do_subst_gr gr = fst (subst_global subst gr) in
  let do_subst_ctx ctx = list_smartmap
    (fun (na, b, t) -> (na, Option.smartmap do_subst b, do_subst t))
    ctx in
  let do_subst_context (grs,ctx) =
    list_smartmap (Option.smartmap (fun (gr,b) -> do_subst_gr gr, b)) grs,
    do_subst_ctx ctx in
  let do_subst_projs projs = list_smartmap (fun (x, y) -> (x, Option.smartmap do_subst_con y)) projs in
  { cl_impl = do_subst_gr cl.cl_impl;
    cl_context = do_subst_context cl.cl_context;
    cl_props = do_subst_ctx cl.cl_props;
    cl_projs = do_subst_projs cl.cl_projs; }

let discharge_class (_,cl) =
  let repl = Lib.replacement_context () in
  let rel_of_variable_context ctx = List.fold_right
    ( fun (n,_,b,t) (ctx', subst) ->
	let decl = (Name n, Option.map (substn_vars 1 subst) b, substn_vars 1 subst t) in
	(decl :: ctx', n :: subst)
    ) ctx ([], []) in
  let discharge_rel_context subst n rel =
    let rel = map_rel_context (Cooking.expmod_constr repl) rel in
    let ctx, _ =
      List.fold_right
	(fun (id, b, t) (ctx, k) ->
	   (id, Option.smartmap (substn_vars k subst) b, substn_vars k subst t) :: ctx, succ k)
	rel ([], n)
    in ctx
  in
  let abs_context cl =
    match cl.cl_impl with
      | VarRef _ | ConstructRef _ -> assert false
      | ConstRef cst -> Lib.section_segment_of_constant cst
      | IndRef (ind,_) -> Lib.section_segment_of_mutual_inductive ind in
  let discharge_context ctx' subst (grs, ctx) =
    let grs' = 
      let newgrs = List.map (fun (_, _, t) -> 
	match class_of_constr t with
	| None -> None
	| Some tc -> Some (tc.cl_impl, true))
	ctx' 
      in
	list_smartmap (Option.smartmap (fun (gr, b) -> Lib.discharge_global gr, b)) grs
	  @ newgrs
    in grs', discharge_rel_context subst 1 ctx @ ctx' in
  let cl_impl' = Lib.discharge_global cl.cl_impl in
  if cl_impl' == cl.cl_impl then cl else
    let ctx = abs_context cl in
    let ctx, subst = rel_of_variable_context ctx in
    let context = discharge_context ctx subst cl.cl_context in
    let props = discharge_rel_context subst (succ (List.length (fst cl.cl_context))) cl.cl_props in
    { cl_impl = cl_impl';
      cl_context = context;
      cl_props = props;
      cl_projs = list_smartmap (fun (x, y) -> x, Option.smartmap Lib.discharge_con y) cl.cl_projs }

let rebuild_class cl = cl

let (class_input,class_output) =
  declare_object
    { (default_object "type classes state") with
      cache_function = cache_class;
      load_function = (fun _ -> load_class);
      open_function = (fun _ -> load_class);
      classify_function = (fun x -> Substitute x);
      discharge_function = (fun a -> Some (discharge_class a));
      rebuild_function = rebuild_class;
      subst_function = subst_class }

let add_class cl =
  Lib.add_anonymous_leaf (class_input cl)


(*
 * instances persistent object
 *)

let load_instance (_,inst) = 
  let insts = 
    try Gmap.find inst.is_class !instances 
    with Not_found -> Gmap.empty in
  let insts = Gmap.add inst.is_impl inst insts in
  instances := Gmap.add inst.is_class insts !instances

let cache_instance = load_instance

let subst_instance (subst,inst) = 
  { inst with 
      is_class = fst (subst_global subst inst.is_class);
      is_impl = fst (subst_global subst inst.is_impl) }

let discharge_instance (_,inst) =
  if inst.is_global <= 0 then None
  else Some 
    { inst with 
      is_global = pred inst.is_global;
      is_class = Lib.discharge_global inst.is_class;
      is_impl = Lib.discharge_global inst.is_impl }
    
let rebuild_instance inst =
  add_instance_hint inst.is_impl inst.is_pri;
  inst

let classify_instance inst =
  if inst.is_global = -1 then Dispose
  else Substitute inst

let (instance_input,instance_output) =
  declare_object
    { (default_object "type classes instances state") with
      cache_function = cache_instance;
      load_function = (fun _ -> load_instance);
      open_function = (fun _ -> load_instance);
      classify_function = classify_instance;
      discharge_function = discharge_instance;
      rebuild_function = rebuild_instance;
      subst_function = subst_instance }

let add_instance i =
  Lib.add_anonymous_leaf (instance_input i);
  add_instance_hint i.is_impl i.is_pri

open Declarations

let add_constant_class cst =
  let ty = Typeops.type_of_constant (Global.env ()) cst in
  let ctx, arity = decompose_prod_assum ty in
  let tc = 
    { cl_impl = ConstRef cst;
      cl_context = (List.map (const None) ctx, ctx);
      cl_props = [(Anonymous, None, arity)];
      cl_projs = []
    }
  in add_class tc;
    set_typeclass_transparency (EvalConstRef cst) false
      
let add_inductive_class ind =
  let mind, oneind = Global.lookup_inductive ind in
  let k =
    let ctx = oneind.mind_arity_ctxt in
    let ty = Inductive.type_of_inductive_knowing_parameters
      (push_rel_context ctx (Global.env ()))
	  oneind (Termops.extended_rel_vect 0 ctx)
    in
      { cl_impl = IndRef ind;
	cl_context = List.map (const None) ctx, ctx;
	cl_props = [Anonymous, None, ty];
	cl_projs = [] }
  in add_class k
      
(*
 * interface functions
 *)

let instance_constructor cl args =
  let lenpars = List.length (List.filter (fun (na, b, t) -> b = None) (snd cl.cl_context)) in
  let pars = fst (list_chop lenpars args) in
    match cl.cl_impl with
      | IndRef ind -> applistc (mkConstruct (ind, 1)) args,
	  applistc (mkInd ind) pars
      | ConstRef cst -> list_last args, applistc (mkConst cst) pars
      | _ -> assert false

let typeclasses () = Gmap.fold (fun _ l c -> l :: c) !classes []

let cmapl_add x y m =
  try
    let l = Gmap.find x m in
    Gmap.add x (Gmap.add y.is_impl y l) m
  with Not_found ->
    Gmap.add x (Gmap.add y.is_impl y Gmap.empty) m

let cmap_elements c = Gmap.fold (fun k v acc -> v :: acc) c []

let instances_of c =
  try cmap_elements (Gmap.find c.cl_impl !instances) with Not_found -> []

let all_instances () = 
  Gmap.fold (fun k v acc -> 
    Gmap.fold (fun k v acc -> v :: acc) v acc)
    !instances []

let instances r = 
  let cl = class_info r in instances_of cl    
      
let is_class gr = 
  Gmap.fold (fun k v acc -> acc || v.cl_impl = gr) !classes false

let is_instance = function
  | ConstRef c ->
      (match Decls.constant_kind c with
      | IsDefinition Instance -> true
      | _ -> false)
  | VarRef v ->
      (match Decls.variable_kind v with
      | IsDefinition Instance -> true
      | _ -> false)
  | ConstructRef (ind,_) -> 
      is_class (IndRef ind)
  | _ -> false

let is_implicit_arg k =
  match k with
      ImplicitArg (ref, (n, id), b) -> true
    | InternalHole -> true
    | _ -> false

(* To embed a boolean for resolvability status.
   This is essentially a hack to mark which evars correspond to
   goals and do not need to be resolved when we have nested [resolve_all_evars]
   calls (e.g. when doing apply in an External hint in typeclass_instances).
   Would be solved by having real evars-as-goals. *)

let ((bool_in : bool -> Dyn.t),
    (bool_out : Dyn.t -> bool)) = Dyn.create "bool"

let bool_false = bool_in false

let is_resolvable evi =
  match evi.evar_extra with
      Some t -> if Dyn.tag t = "bool" then bool_out t else true
    | None -> true

let mark_unresolvable evi =
  { evi with evar_extra = Some bool_false }

let mark_unresolvables sigma =
  Evd.fold (fun ev evi evs ->
    Evd.add evs ev (mark_unresolvable evi))
    sigma Evd.empty

let has_typeclasses evd =
  Evd.fold (fun ev evi has -> has ||
    (evi.evar_body = Evar_empty && is_class_evar evd evi && is_resolvable evi))
    evd false

let solve_instanciations_problem = ref (fun _ _ _ _ _ -> assert false)
let solve_instanciation_problem = ref (fun _ _ _ -> assert false)

let resolve_typeclasses ?(onlyargs=false) ?(split=true) ?(fail=true) env evd =
  if not (has_typeclasses evd) then evd
  else !solve_instanciations_problem env evd onlyargs split fail

let resolve_one_typeclass env evm t =
  !solve_instanciation_problem env evm t