summaryrefslogtreecommitdiff
path: root/pretyping/typeclasses.ml
blob: 86168a1f1cffc484950e3c06de16318e79dc13e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
(* -*- compile-command: "make -C .. bin/coqtop.byte" -*- *)
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: typeclasses.ml 11282 2008-07-28 11:51:53Z msozeau $ i*)

(*i*)
open Names
open Libnames
open Decl_kinds
open Term
open Sign
open Evd
open Environ
open Nametab
open Mod_subst
open Util
open Typeclasses_errors
(*i*)

let mismatched_params env n m = mismatched_ctx_inst env Parameters n m
(* let mismatched_defs env n m = mismatched_ctx_inst env Definitions n m *)
let mismatched_props env n m = mismatched_ctx_inst env Properties n m

type rels = constr list

(* This module defines type-classes *)
type typeclass = {
  (* The class implementation *)
  cl_impl : global_reference; 

  (* Context in which the definitions are typed. Includes both typeclass parameters and superclasses. *)
  cl_context : ((global_reference * bool) option * rel_declaration) list; 

  (* Context of definitions and properties on defs, will not be shared *)
  cl_props : rel_context;
  
  (* The method implementaions as projections. *)
  cl_projs : (identifier * constant) list;
}

type typeclasses = (global_reference, typeclass) Gmap.t

type globality = int option

type instance = {
  is_class: global_reference;
  is_pri: int option;
  is_global: globality;
  (* Sections where the instance should be redeclared, 
     Some n for n sections, None for discard at end of section. *)
  is_impl: constant; 
}

type instances = (global_reference, instance Cmap.t) Gmap.t

let instance_impl is = is.is_impl

let new_instance cl pri glob impl = 
  let global =
    if Lib.sections_are_opened () then 
      if glob then Some (Lib.sections_depth ())
      else None
    else Some 0
  in
    { is_class = cl.cl_impl;
      is_pri = pri ;
      is_global = global ;
      is_impl = impl }
	
let classes : typeclasses ref = ref Gmap.empty

let methods : (constant, global_reference) Gmap.t ref = ref Gmap.empty
  
let instances : instances ref = ref Gmap.empty
  
let freeze () = !classes, !methods, !instances

let unfreeze (cl,m,is) = 
  classes:=cl;
  methods:=m;
  instances:=is
    
let init () =
  classes:= Gmap.empty; 
  methods:= Gmap.empty;
  instances:= Gmap.empty
    
let _ = 
  Summary.declare_summary "classes_and_instances"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = init;
      Summary.survive_module = false;
      Summary.survive_section = true }

let gmap_merge old ne =
  Gmap.fold (fun k v acc -> Gmap.add k v acc) old ne

let cmap_union = Cmap.fold Cmap.add

let gmap_cmap_merge old ne =
  let ne' = 
    Gmap.fold (fun cl insts acc -> 
      let oldinsts = try Gmap.find cl old with Not_found -> Cmap.empty in
	Gmap.add cl (cmap_union oldinsts insts) acc)
      ne Gmap.empty
  in
    Gmap.fold (fun cl insts acc -> 
      if Gmap.mem cl ne' then acc
      else Gmap.add cl insts acc)
      old ne'

let add_instance_hint_ref = ref (fun id pri -> assert false)
let register_add_instance_hint =
  (:=) add_instance_hint_ref
let add_instance_hint id = !add_instance_hint_ref id

let cache (_, (cl, m, inst)) =
  classes := cl;
  methods := m;
  instances := inst
    
let load (_, (cl, m, inst)) =
  classes := gmap_merge !classes cl;
  methods := gmap_merge !methods m;
  instances := gmap_cmap_merge !instances inst

open Libobject

let subst (_,subst,(cl,m,inst)) = 
  let do_subst_con c = fst (Mod_subst.subst_con subst c)
  and do_subst c = Mod_subst.subst_mps subst c
  and do_subst_gr gr = fst (subst_global subst gr)
  in
  let do_subst_named ctx = 
    list_smartmap (fun (na, b, t) ->
      (na, Option.smartmap do_subst b, do_subst t))
      ctx
  in
  let do_subst_ctx ctx = 
    list_smartmap (fun (cl, (na, b, t)) ->
      (Option.smartmap (fun (gr,b) -> do_subst_gr gr, b) cl,
      (na, Option.smartmap do_subst b, do_subst t)))
      ctx
  in
  let do_subst_projs projs = list_smartmap (fun (x, y) -> (x, do_subst_con y)) projs in
  let subst_class k cl classes = 
    let k = do_subst_gr k in
    let cl' = { cl_impl = k;
		cl_context = do_subst_ctx cl.cl_context;
		cl_props = do_subst_named cl.cl_props;
		cl_projs = do_subst_projs cl.cl_projs; }
    in 
    let cl' = if cl' = cl then cl else cl' in
      Gmap.add k cl' classes
  in
  let classes = Gmap.fold subst_class cl Gmap.empty in
  let subst_inst k insts instances =
    let k = do_subst_gr k in
    let insts' = 
      Cmap.fold (fun cst is acc -> 
	let cst = do_subst_con cst in
	let is' = { is with is_class = k; is_impl = cst } in
	  Cmap.add cst (if is' = is then is else is') acc) insts Cmap.empty
    in Gmap.add k insts' instances
  in
  let instances = Gmap.fold subst_inst inst Gmap.empty in
    (classes, m, instances)

let discharge (_,(cl,m,inst)) =
  let discharge_context subst rel =
    let ctx, _ =
      List.fold_right
	(fun (gr, (id, b, t)) (ctx, k) -> 
	  let gr' = Option.map (fun (gr, b) -> Lib.discharge_global gr, b) gr in
	    ((gr', (id, Option.map (substn_vars k subst) b, substn_vars k subst t)) :: ctx), succ k)
	rel ([], 0)
    in ctx
  in
  let abs_context cl =
    match cl.cl_impl with
    | VarRef _ | ConstructRef _ -> assert false
    | ConstRef cst -> Lib.section_segment_of_constant cst
    | IndRef (ind,_) -> Lib.section_segment_of_mutual_inductive ind
  in
  let subst_class k cl acc = 
    let cl_impl' = Lib.discharge_global cl.cl_impl in
    let cl' =
      if cl_impl' == cl.cl_impl then cl
      else
	let ctx = abs_context cl in
	{ cl with cl_impl = cl_impl';
	  cl_context = 
	    List.map (fun (na,impl,b,t) -> None, (Name na,b,t)) ctx @
	      (discharge_context (List.map (fun (na, _, _, _) -> na) ctx) cl.cl_context);
	  cl_projs = list_smartmap (fun (x, y) -> x, Lib.discharge_con y) cl.cl_projs }
    in Gmap.add cl_impl' cl' acc
  in
  let classes = Gmap.fold subst_class cl Gmap.empty in
  let subst_inst k insts acc =
    let k' = Lib.discharge_global k in
    let insts' =
      Cmap.fold (fun k is acc ->
	let impl = Lib.discharge_con is.is_impl in
	let is = { is with is_class = k'; is_impl = impl } in
	  Cmap.add impl is acc)
	insts Cmap.empty
    in Gmap.add k' insts' acc
  in
  let instances = Gmap.fold subst_inst inst Gmap.empty in
    Some (classes, m, instances)
      
let rebuild (cl,m,inst) =
  let inst = 
    Gmap.map (fun insts -> 
      Cmap.fold (fun k is insts -> 
	match is.is_global with
	  | None -> insts
	  | Some 0 -> Cmap.add k is insts
	  | Some n -> 
	      add_instance_hint is.is_impl is.is_pri;
	      let is' = { is with is_global = Some (pred n) }
	      in Cmap.add k is' insts) insts Cmap.empty)
      inst
  in (cl, m, inst)

let (input,output) = 
  declare_object
    { (default_object "type classes state") with
      cache_function = cache;
      load_function = (fun _ -> load);
      open_function = (fun _ -> load);
      classify_function = (fun (_,x) -> Substitute x);
      discharge_function = discharge;
      rebuild_function = rebuild;
      subst_function = subst;
      export_function = (fun x -> Some x) }

let update () = 
  Lib.add_anonymous_leaf (input (!classes, !methods, !instances))

let add_class c = 
  classes := Gmap.add c.cl_impl c !classes;
  methods := List.fold_left (fun acc x -> Gmap.add (snd x) c.cl_impl acc) !methods c.cl_projs;
  update ()
    
let class_info c = 
  try Gmap.find c !classes
  with _ -> not_a_class (Global.env()) (constr_of_global c)

let instance_constructor cl args = 
  let pars = fst (list_chop (List.length cl.cl_context) args) in
    match cl.cl_impl with
      | IndRef ind -> applistc (mkConstruct (ind, 1)) args,
	  applistc (mkInd ind) pars
      | ConstRef cst -> list_last args, applistc (mkConst cst) pars
      | _ -> assert false
	  
let typeclasses () = Gmap.fold (fun _ l c -> l :: c) !classes []

let cmapl_add x y m =
  try
    let l = Gmap.find x m in
    Gmap.add x (Cmap.add y.is_impl y l) m
  with Not_found ->
    Gmap.add x (Cmap.add y.is_impl y Cmap.empty) m

let cmap_elements c = Cmap.fold (fun k v acc -> v :: acc) c []

let instances_of c = 
  try cmap_elements (Gmap.find c.cl_impl !instances) with Not_found -> []

let add_instance i =
  let cl = class_info i.is_class in
  instances := cmapl_add cl.cl_impl i !instances;
  add_instance_hint i.is_impl i.is_pri;
  update ()

let all_instances () = 
  Gmap.fold (fun k v acc -> 
    Cmap.fold (fun k v acc -> v :: acc) v acc)
    !instances []

let instances r = 
  let cl = class_info r in instances_of cl
    
let method_typeclass ref = 
  match ref with 
    | ConstRef c -> 
	class_info (Gmap.find c !methods)
    | _ -> raise Not_found
      
let is_class gr = 
  Gmap.fold (fun k v acc -> acc || v.cl_impl = gr) !classes false
  
let is_method c =
  Gmap.mem c !methods

let is_instance = function
  | ConstRef c ->
      (match Decls.constant_kind c with
      | IsDefinition Instance -> true
      | _ -> false)
  | VarRef v ->
      (match Decls.variable_kind v with
      | IsDefinition Instance -> true
      | _ -> false)
  | _ -> false

let is_implicit_arg k = 
  match k with
      ImplicitArg (ref, (n, id)) -> true
    | InternalHole -> true
    | _ -> false

let class_of_constr c = 
  let extract_cl c =
    try Some (class_info (global_of_constr c)) with _ -> None
  in
    match kind_of_term c with
	App (c, _) -> extract_cl c
      | _ -> extract_cl c

let dest_class_app c =
  let cl c = class_info (global_of_constr c) in
    match kind_of_term c with
	App (c, args) -> cl c, args
      | _ -> cl c, [||]

(* To embed a boolean for resolvability status.
   This is essentially a hack to mark which evars correspond to 
   goals and do not need to be resolved when we have nested [resolve_all_evars] 
   calls (e.g. when doing apply in an External hint in typeclass_instances).
   Would be solved by having real evars-as-goals. *)

let ((bool_in : bool -> Dyn.t),
    (bool_out : Dyn.t -> bool)) = Dyn.create "bool"
  
let bool_false = bool_in false

let is_resolvable evi =
  match evi.evar_extra with
      Some t -> if Dyn.tag t = "bool" then bool_out t else true
    | None -> true
	
let mark_unresolvable evi = 
  { evi with evar_extra = Some bool_false }
    
let mark_unresolvables sigma =
  Evd.fold (fun ev evi evs ->
    Evd.add evs ev (mark_unresolvable evi))
    sigma Evd.empty
    
let rec is_class_type c =
  match kind_of_term c with
  | Prod (_, _, t) -> is_class_type t
  | _ -> class_of_constr c <> None

let is_class_evar evi = 
  is_class_type evi.Evd.evar_concl
    
let has_typeclasses evd =
  Evd.fold (fun ev evi has -> has || 
    (evi.evar_body = Evar_empty && is_class_evar evi && is_resolvable evi))
    evd false

let solve_instanciations_problem = ref (fun _ _ _ _ _ -> assert false)
let solve_instanciation_problem = ref (fun _ _ _ -> assert false)

let resolve_typeclasses ?(onlyargs=false) ?(split=true) ?(fail=true) env evd =
  if not (has_typeclasses (Evd.evars_of evd)) then evd
  else
    !solve_instanciations_problem env (Evarutil.nf_evar_defs evd) onlyargs split fail

let resolve_one_typeclass env evm t =
  !solve_instanciation_problem env evm t