summaryrefslogtreecommitdiff
path: root/pretyping/coercion.ml
blob: 86f96c7cd2e0af4f17729fc5ce15f15129275e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Created by Hugo Herbelin for Coq V7 by isolating the coercion
   mechanism out of the type inference algorithm in file trad.ml from
   Coq V6.3, Nov 1999; The coercion mechanism was implemented in
   trad.ml by Amokrane Saïbi, May 1996 *)
(* Addition of products and sorts in canonical structures by Pierre
   Corbineau, Feb 2008 *)
(* Turned into an abstract compilation unit by Matthieu Sozeau, March 2006 *)

open Util
open Names
open Term
open Reductionops
open Environ
open Typeops
open Pretype_errors
open Classops
open Recordops
open Evarutil
open Evarconv
open Retyping
open Evd
open Termops

module type S = sig
  (*s Coercions. *)

  (* [inh_app_fun env evd j] coerces [j] to a function; i.e. it
     inserts a coercion into [j], if needed, in such a way it gets as
     type a product; it returns [j] if no coercion is applicable *)
  val inh_app_fun :
    env -> evar_map -> unsafe_judgment -> evar_map * unsafe_judgment

  (* [inh_coerce_to_sort env evd j] coerces [j] to a type; i.e. it
     inserts a coercion into [j], if needed, in such a way it gets as
     type a sort; it fails if no coercion is applicable *)
  val inh_coerce_to_sort : loc ->
    env -> evar_map -> unsafe_judgment -> evar_map * unsafe_type_judgment

  (* [inh_coerce_to_base env evd j] coerces [j] to its base type; i.e. it
     inserts a coercion into [j], if needed, in such a way it gets as
     type its base type (the notion depends on the coercion system) *)
  val inh_coerce_to_base : loc ->
    env -> evar_map -> unsafe_judgment -> evar_map * unsafe_judgment

  (* [inh_coerce_to_prod env evars t] coerces [t] to a product type *)
  val inh_coerce_to_prod : loc ->
    env -> evar_map -> type_constraint_type -> evar_map * type_constraint_type

  (* [inh_conv_coerce_to loc env evd j t] coerces [j] to an object of type
     [t]; i.e. it inserts a coercion into [j], if needed, in such a way [t] and
     [j.uj_type] are convertible; it fails if no coercion is applicable *)
  val inh_conv_coerce_to : loc ->
    env -> evar_map -> unsafe_judgment -> type_constraint_type -> evar_map * unsafe_judgment

  val inh_conv_coerce_rigid_to : loc ->
    env -> evar_map -> unsafe_judgment -> type_constraint_type -> evar_map * unsafe_judgment

  (* [inh_conv_coerces_to loc env evd t t'] checks if an object of type [t]
     is coercible to an object of type [t'] adding evar constraints if needed;
     it fails if no coercion exists *)
  val inh_conv_coerces_to : loc ->
    env -> evar_map -> types -> type_constraint_type -> evar_map

  (* [inh_pattern_coerce_to loc env evd pat ind1 ind2] coerces the Cases
     pattern [pat] typed in [ind1] into a pattern typed in [ind2];
     raises [Not_found] if no coercion found *)
  val inh_pattern_coerce_to :
    loc  -> Glob_term.cases_pattern -> inductive -> inductive -> Glob_term.cases_pattern
end

module Default = struct
  (* Typing operations dealing with coercions *)
  exception NoCoercion

  (* Here, funj is a coercion therefore already typed in global context *)
  let apply_coercion_args env argl funj =
    let rec apply_rec acc typ = function
      | [] -> { uj_val = applist (j_val funj,argl);
		uj_type = typ }
      | h::restl ->
	  (* On devrait pouvoir s'arranger pour qu'on n'ait pas à faire hnf_constr *)
  	  match kind_of_term (whd_betadeltaiota env Evd.empty typ) with
	    | Prod (_,c1,c2) ->
		(* Typage garanti par l'appel à app_coercion*)
		apply_rec (h::acc) (subst1 h c2) restl
	    | _ -> anomaly "apply_coercion_args"
    in
      apply_rec [] funj.uj_type argl

  (* appliquer le chemin de coercions de patterns p *)
  let apply_pattern_coercion loc pat p =
    List.fold_left
      (fun pat (co,n) ->
	 let f i = if i<n then Glob_term.PatVar (loc, Anonymous) else pat in
	   Glob_term.PatCstr (loc, co, list_tabulate f (n+1), Anonymous))
      pat p

  (* raise Not_found if no coercion found *)
  let inh_pattern_coerce_to loc pat ind1 ind2 =
    let p = lookup_pattern_path_between (ind1,ind2) in
      apply_pattern_coercion loc pat p

  let saturate_evd env evd =
    Typeclasses.resolve_typeclasses
      ~filter:Typeclasses.no_goals ~split:true ~fail:false env evd

  (* appliquer le chemin de coercions p à hj *)
  let apply_coercion env sigma p hj typ_cl =
    try
      fst (List.fold_left
             (fun (ja,typ_cl) i ->
		let fv,isid = coercion_value i in
		let argl = (class_args_of env sigma typ_cl)@[ja.uj_val] in
		let jres = apply_coercion_args env argl fv in
		  (if isid then
		     { uj_val = ja.uj_val; uj_type = jres.uj_type }
		   else
		     jres),
		jres.uj_type)
             (hj,typ_cl) p)
    with e when Errors.noncritical e -> anomaly "apply_coercion"

  let inh_app_fun env evd j =
    let t = whd_betadeltaiota env evd j.uj_type in
      match kind_of_term t with
	| Prod (_,_,_) -> (evd,j)
	| Evar ev ->
	    let (evd',t) = define_evar_as_product evd ev in
	      (evd',{ uj_val = j.uj_val; uj_type = t })
	| _ ->
      	    let t,p =
	      lookup_path_to_fun_from env evd j.uj_type in
	      (evd,apply_coercion env evd p j t)

  let inh_app_fun env evd j =
    try inh_app_fun env evd j
    with Not_found ->
      try inh_app_fun env (saturate_evd env evd) j
      with Not_found -> (evd, j)

  let inh_tosort_force loc env evd j =
    try
      let t,p = lookup_path_to_sort_from env evd j.uj_type in
      let j1 = apply_coercion env evd p j t in
      let j2 = on_judgment_type (whd_evar evd) j1 in
        (evd,type_judgment env j2)
    with Not_found ->
      error_not_a_type_loc loc env evd j

  let inh_coerce_to_sort loc env evd j =
    let typ = whd_betadeltaiota env evd j.uj_type in
      match kind_of_term typ with
	| Sort s -> (evd,{ utj_val = j.uj_val; utj_type = s })
	| Evar ev when not (is_defined_evar evd ev) ->
	    let (evd',s) = define_evar_as_sort evd ev in
	      (evd',{ utj_val = j.uj_val; utj_type = s })
	| _ ->
	    inh_tosort_force loc env evd j

  let inh_coerce_to_base loc env evd j = (evd, j)
  let inh_coerce_to_prod loc env evd t = (evd, t)

  let inh_coerce_to_fail env evd rigidonly v t c1 =
    if rigidonly & not (Heads.is_rigid env c1 && Heads.is_rigid env t)
    then
      raise NoCoercion
    else
    let v', t' =
      try
	let t2,t1,p = lookup_path_between env evd (t,c1) in
	  match v with
	      Some v ->
		let j =
		  apply_coercion env evd p
		    {uj_val = v; uj_type = t} t2 in
		  Some j.uj_val, j.uj_type
	    | None -> None, t
      with Not_found -> raise NoCoercion
    in
      try (the_conv_x_leq env t' c1 evd, v')
      with Reduction.NotConvertible -> raise NoCoercion

  let rec inh_conv_coerce_to_fail loc env evd rigidonly v t c1 =
    try (the_conv_x_leq env t c1 evd, v)
    with Reduction.NotConvertible ->
    try inh_coerce_to_fail env evd rigidonly v t c1
    with NoCoercion ->
    match
      kind_of_term (whd_betadeltaiota env evd t),
      kind_of_term (whd_betadeltaiota env evd c1)
    with
    | Prod (name,t1,t2), Prod (_,u1,u2) ->
        (* Conversion did not work, we may succeed with a coercion. *)
        (* We eta-expand (hence possibly modifying the original term!) *)
	(* and look for a coercion c:u1->t1 s.t. fun x:u1 => v' (c x)) *)
	(* has type forall (x:u1), u2 (with v' recursively obtained) *)
        (* Note: we retype the term because sort-polymorphism may have *)
        (* weaken its type *)
	let name = match name with
	  | Anonymous -> Name (id_of_string "x")
	  | _ -> name in
	let env1 = push_rel (name,None,u1) env in
	let (evd', v1) =
	  inh_conv_coerce_to_fail loc env1 evd rigidonly
            (Some (mkRel 1)) (lift 1 u1) (lift 1 t1) in
        let v1 = Option.get v1 in
	let v2 = Option.map (fun v -> beta_applist (lift 1 v,[v1])) v in
	let t2 = match v2 with
	  | None -> subst_term v1 t2
	  | Some v2 -> Retyping.get_type_of env1 evd' v2 in
	let (evd'',v2') = inh_conv_coerce_to_fail loc env1 evd' rigidonly v2 t2 u2 in
	(evd'', Option.map (fun v2' -> mkLambda (name, u1, v2')) v2')
    | _ -> raise NoCoercion

  (* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *)
  let inh_conv_coerce_to_gen rigidonly loc env evd cj (n, t) =
    match n with
	None ->
	  let (evd', val') =
	    try
	      inh_conv_coerce_to_fail loc env evd rigidonly (Some cj.uj_val) cj.uj_type t
	    with NoCoercion ->
	      let evd = saturate_evd env evd in
		try
		  inh_conv_coerce_to_fail loc env evd rigidonly (Some cj.uj_val) cj.uj_type t
		with NoCoercion ->
		  error_actual_type_loc loc env evd cj t
	  in
	  let val' = match val' with Some v -> v | None -> assert(false) in
	    (evd',{ uj_val = val'; uj_type = t })
      | Some (init, cur) -> (evd, cj)

  let inh_conv_coerce_to = inh_conv_coerce_to_gen false
  let inh_conv_coerce_rigid_to = inh_conv_coerce_to_gen true


    let inh_conv_coerces_to loc env (evd : evar_map) t (abs, t') =
      if abs = None then
	try
	  fst (inh_conv_coerce_to_fail loc env evd true None t t')
	with NoCoercion ->
	  evd (* Maybe not enough information to unify *)
      else
        evd
      (* Still problematic, as it changes unification
      let nabsinit, nabs =
	match abs with
	    None -> 0, 0
	  | Some (init, cur) -> init, cur
      in
	try
	  let (rels, rng) =
	    (* a little more effort to get products is needed *)
	    try decompose_prod_n nabs t
	    with _ ->
	      if !Flags.debug then
		msg_warning (str "decompose_prod_n failed");
	      raise (Invalid_argument "Coercion.inh_conv_coerces_to")
	  in
	    (* The final range free variables must have been replaced by evars, we accept only that evars
	       in rng are applied to free vars. *)
	    if noccur_with_meta 0 (succ nabsinit) rng then (
	      let env', t, t' =
		let env' = List.fold_right (fun (n, t) env -> push_rel (n, None, t) env) rels env in
		  env', rng, lift nabs t'
	      in
		try
		  pi1 (inh_conv_coerce_to_fail loc env' evd None t t')
		with NoCoercion ->
		  evd) (* Maybe not enough information to unify *)
	      (*let sigma =  evd in
		error_cannot_coerce env' sigma (t, t'))*)
	    else evd
	with Invalid_argument _ -> evd	  *)
end