summaryrefslogtreecommitdiff
path: root/lib/hashtbl_alt.ml
blob: bb2252da5142a19996706f434475b984aa0fab0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* The following module is a specialized version of [Hashtbl] that is
   a better space saver. Actually, [Hashcons] instanciates [Hashtbl.t]
   with [constr] used both as a key and as an image.  Thus, in each
   cell of the internal bucketlist, there are two representations of
   the same value. In this implementation, there is only one.

   Besides, the responsibility of computing the hash function is now
   given to the caller, which makes possible the interleaving of the
   hash key computation and the hash-consing. *)

module type Hashtype = sig
  type t
  val equals : t -> t -> bool
end

module type S = sig
  type elt
  (* [may_add_and_get key constr] uses [key] to look for [constr]
     in the hash table [H]. If [constr] is in [H], returns the
     specific representation that is stored in [H]. Otherwise,
     [constr] is stored in [H] and will be used as the canonical
     representation of this value in the future. *)
  val may_add_and_get : int -> elt -> elt
end

module Make (E : Hashtype) =
  struct

    type elt = E.t

    type bucketlist = Empty | Cons of elt * int * bucketlist

    let initial_size = 19991
    let table_data = ref (Array.make initial_size Empty)
    let table_size = ref 0

    let resize () =
      let odata = !table_data in
      let osize = Array.length odata in
    let nsize = min (2 * osize + 1) Sys.max_array_length in
    if nsize <> osize then begin
      let ndata = Array.create nsize Empty in
      let rec insert_bucket = function
	| Empty -> ()
	| Cons (key, hash, rest) ->
          let nidx = hash mod nsize in
          ndata.(nidx) <- Cons (key, hash, ndata.(nidx));
          insert_bucket rest
      in
      for i = 0 to osize - 1 do insert_bucket odata.(i) done;
      table_data := ndata
    end

  let add hash key =
    let odata = !table_data in
    let osize = Array.length odata in
    let i = hash mod osize in
    odata.(i) <- Cons (key, hash, odata.(i));
    incr table_size;
    if !table_size > osize lsl 1 then resize ()

  let find_rec hash key bucket =
    let rec aux = function
      | Empty ->
	add hash key; key
      | Cons (k, h, rest) ->
	if hash == h && E.equals key k then k else aux rest
    in
    aux bucket

  let may_add_and_get hash key =
    let odata = !table_data in
    match odata.(hash mod (Array.length odata)) with
      |	Empty -> add hash key; key
      | Cons (k1, h1, rest1) ->
	if hash == h1 && E.equals key k1 then k1 else
	  match rest1 with
            | Empty -> add hash key; key
	    | Cons (k2, h2, rest2) ->
              if hash == h2 && E.equals key k2 then k2 else
		match rest2 with
		  | Empty -> add hash key; key
		  | Cons (k3, h3, rest3) ->
		    if hash == h3 && E.equals key k3 then k3
		    else find_rec hash key rest3

end

module Combine = struct
    (* These are helper functions to combine the hash keys in a similar
       way as [Hashtbl.hash] does. The constants [alpha] and [beta] must
       be prime numbers. There were chosen empirically. Notice that the
       problem of hashing trees is hard and there are plenty of study on
       this topic. Therefore, there must be room for improvement here. *)
    let alpha = 65599
    let beta  = 7
    let combine x y     = x * alpha + y
    let combine3 x y z   = combine x (combine y z)
    let combine4 x y z t = combine x (combine3 y z t)
    let combinesmall x y = beta * x + y
end